[1] Delanghe R. On regular analytic functions with values in a Clifford algebra. Math Ann, 1970, 185: 91–111
[2] Delanghe R. On the singularities of functions with values in a Clifford algebra. Math Ann, 1972, 196: 293–319
[3] Brackx F, Delanghe R, Sommen F. Clifford Analysis. Research Notes in Mathematics, Vol 76. London: Pitman Books Ltd, 1982
[4] Mohamed E K. Liouville’s theorem and the restricted mean property for biharmonic functions. Electron J Diff Eqns, 2004, 66: 1–5
[5] Zhang Zhongxiang. On higher order Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra. Bull Belg Math Soc, 2007, 14: 87–97
[6] Zhang Zhongxiang. On k-regular functions with values in a universal Clifford algebar. J Math Anal Appl, 2006, 315(2): 491–505
[7] G¨urlebeck K, Zhang Zhongxiang. Some Riemann boundary value problems in Clifford analysis. Math Meth Appl Sci, 2010, 33: 287–302
[8] Aronszajn N, Greese T M, Lipkin L J. Polyharmonic Functions. Oxford: Clarendon Press, 1983
[9] Ryan J, Basic Clifford analysis. Cubo Math Educ, 2000, 2: 226–256
[10] Delanghe R, Sommen F, Soucek V, Clifford Algebra and Spinor-Valued Functions. Dordrecht: Kluwer Academic, 1992
[11] Begehr H. Iterations of Pompeiu operators. Mems Diff Eqns Math Phys, 1997, 12: 3–21
[12] Begehr H. Iterated integral operators in Clifford analysis. J Anal Appl, 1999, 18: 361–377
[13] Begehr H, Zhang Zhongxiang, Du Jinyuan. On Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra. Acta Math Sci, 2003, 23B(1): 95–103
[14] Begehr H, Du Jinyuan, Zhang Zhongxiang. On higher order Cauchy-Pompeiu formula in Clifford analysis and its applications. Gen Math, 2003, 11: 5–26
[15] De Almeida R, Kraußhar R S. On the asymptotic growth of entire monogenic functions. J Anal Appl, 2005, 24: 791–813
[16] Constales D, De Almeida R, Kraußhar R S. On Cauchy estimates and growth orders of entire solutions of iterated Dirac and generalized Cauchy-Riemann equations. Math Meth Appl Sci, 2006, 29: 1663–1686
[17] Delanghe R, Brackx F. Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc London Math Soc, 1978, 37: 545–576
[18] G¨urlebeck K, Spr¨ossig W. Quaternionic and Clifford Calculus for Physicists and Engineers. New York: Wiley, 1997
[19] Ku Min, Du Jinyuan, Wang Daoshun. Some properties of holomorphic Cliffordian functions in complex Clifford analysis. Acta Math Sci, 2010, 30B(3): 747–768
[20] Du Jinyuan, Xu Na, Zhang Zhongxiang. Boundary behavior of Cauchy-type integrals in Clifford analysis. Acta Math Sci, 2009, 29B(1): 210–224
[21] Jiang Le, Du Jinyuan. Riemann boundary value problems for some K-regular functions in Clifford analysis. Acta Math Sci, 2012, 32B(5): 2029–2049 |