Acta mathematica scientia,Series B ›› 2011, Vol. 31 ›› Issue (3): 857-881.doi: 10.1016/S0252-9602(11)60282-8
• Articles • Previous Articles Next Articles
YUAN Yi-Rang
Received:
2009-07-13
Revised:
2009-11-16
Online:
2011-05-20
Published:
2011-05-20
Supported by:
This work is supported by the Major State Basic Research Program of China (19990328), the National Tackling Key Problem Programs (20050200069), the National Natural Science Foundation of China (10771124; 10372052), the Doctorate Foundation of the Ministry of Education of China (20030422047), Shandong Provance Natural Science Foundation (2R2009AQ12), and the Independent Innovation Foundation of Shandong University (2010TS031).
CLC Number:
YUAN Yi-Rang. THE UPWIND FINITE DIFFERENCE METHOD FOR MOVING BOUNDARY VALUE PROBLEM OF COUPLED SYSTEM[J].Acta mathematica scientia,Series B, 2011, 31(3): 857-881.
[1] Ewing R E. The Mathematics of Reservoir Simulation. Philadelphia: SIAM, 1983 [2] Bredehoeft J D, Pinder G F. Digital analysis of areal flow in multiaquifer groundwater systems: A quasi-three-dimensional model. Water Resources Research, 1970, 6(3): 883--888 [3] Don W, Emil O F. An iterative quasi-three-dimensional finite element model for heterogeneous multiaquifer systems. Water Resources Research, 1978, 14(5): 943--952 [4] Ungerer P, et al. Migration of Hydrocarbon in Sedimentary Basins. Paris: Editions Techniq, 1987: 414--455 [5] Ungerer P. Fluid flow, hydrocarbon generation and migration. AAPG Bull, 1990, 74(3): 309--335 [6] Douglas Jr J, Russell T F. Numerical method for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J Numer Anal, 1982, 19(5): 871--885 [7] Douglas Jr J. Finite difference methods for two-phase incompressible flow in porous media. SIAM J Numer Anal, 1983, 20(4): 681--696 [8] Bermudez A, Nogueiras M R, Vazquez C. Numerical analysis of convection-diffusion-reaction problems with higher order [9] Bermudez A, Nogueriras M R, Vazquez C. Numerical analysis of convection-diffusion-reaction problems with higher order [10] Peaceman D W. Fundamental of Numerical Reservoir Simulation. Amsterdam: Elsevier, 1980 [11] Ewing R E, Lazarov R D, Vassilev A T. Finite difference scheme for parabolic problems on a composite grids with refinement in time and space. SIAM J Numer Anal, 1994, 31(6): 1605--1622 [12] Lazarov R D, Mischev I D, Vassilevski P S. Finite volume methods for convection-diffusion problems. SIAM J Numer Anal, 1996, 33(1): 31--55 [13] Marchuk G I. Splitting and alternating direction method//Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis. Paris: Elesevior Science Publishers, B V, 1990: 197--460 [14] Yuan Y R. The upwind finite difference fractional steps method for combinatorial system of dynamics of fluids in porous media and its application. Science in China, Series A, 2002, 45(5): 578--593. [15] Yuan Y R. The finite difference method for the three-dimensional nonlinear coupled system of dynamics of fluids in porous media. Science in China, Series A, 2006, 49(2): 185--211 [18] Yuan Y R, Han Y J. Numerical simulation of migration-accumulation of oil resources. Comput Geosi, 2008, 12: 153--162 [19] Yuan Y R, Han Y J. Numerical simulation and application of three-dimensional oil resources migration-accumulation of fluid [20] Samarskii A A. Introduction to the Theory Difference Schemes. Moscow: Nauka, 1971 (Russion) [22] Yanenko N N. The Method of Fractional Steps. New York: Springer-Verlag, 1971 [23] Yuan Y R. The characteristic finite difference fractional steps methods for compressible two-phase displacement problem. [24] Samarskii A A, Andreev B B. Finite Difference Methods for Elliptic Equation. Beijing: Science Press, 1984
[26] Chen G N. Matrix Theory and Application. Beijing: Science Press, 2007 |
[1] | Zhiqiang GAO. A NOTE ON EXACT CONVERGENCE RATE IN THE LOCAL LIMIT THEOREM FOR A LATTICE BRANCHING RANDOM WALK [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1259-1268. |
[2] | Xiaoli DING, Yaolin JIANG. NONNEGATIVITY OF SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL-ALGEBRAIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(3): 756-768. |
[3] | Zhou SHENG, Gonglin YUAN, Zengru CUI. A NEW ADAPTIVE TRUST REGION ALGORITHM FOR OPTIMIZATION PROBLEMS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 479-496. |
[4] | Huoyuan DUAN, Junhua MA. CONTINUOUS FINITE ELEMENT METHODS FOR REISSNER-MINDLIN PLATE PROBLEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 450-470. |
[5] | Yekini SHEHU, Olaniyi. S. IYIOLA. CONVERGENCE OF HYBRID VISCOSITY AND STEEPEST-DESCENT METHODS FOR PSEUDOCONTRACTIVE MAPPINGS AND NONLINEAR HAMMERSTEIN EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 610-626. |
[6] | Xiaoni CHI, Hongjin WEI, Zhongping WAN, Zhibin ZHU. SMOOTHING NEWTON ALGORITHM FOR THE CIRCULAR CONE PROGRAMMING WITH A NONMONOTONE LINE SEARCH [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1262-1280. |
[7] | Dehua QIU, Pingyan CHEN, Volodin ANDREI. COMPLETE MOMENT CONVERGENCE FOR LP-MIXINGALES [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1319-1330. |
[8] | Dongyang SHI, Xin LIAO, Lele WANG. A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRODINGER EQUATION [J]. Acta mathematica scientia,Series B, 2017, 37(3): 584-592. |
[9] | Nermina MUJAKOVIC, Nelida CRNJARIC-ZIC. GLOBAL SOLUTION TO 1D MODEL OF A COMPRESSIBLE VISCOUS MICROPOLAR HEAT-CONDUCTING FLUID WITH A FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(6): 1541-1576. |
[10] | Jing ZHAO, Shengnan WANG. VISCOSITY APPROXIMATION METHODS FOR THE SPLIT EQUALITY COMMON FIXED POINT PROBLEM OF QUASI-NONEXPANSIVE OPERATORS [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1474-1486. |
[11] | Mina JIANG, Suhua LAI, Haiyan YIN, Changjiang ZHU. THE STABILITY OF STATIONARY SOLUTION FOR OUTFLOW PROBLEM ON THE NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1098-1116. |
[12] | Y. SHEHU, O. T. MEWOMO, F. U. OGBUISI. FURTHER INVESTIGATION INTO APPROXIMATION OF A COMMON SOLUTION OF FIXED POINT PROBLEMS AND SPLIT FEASIBILITY PROBLEMS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 913-930. |
[13] | Ushangi GOGINAVA, Károly NAGY. WEAK TYPE INEQUALITY FOR THE MAXIMAL OPERATOR OF WALSH-KACZMARZ-MARCINKIEWICZ MEANS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 359-370. |
[14] | Zhendong LUO. A STABILIZED MIXED FINITE ELEMENT FORMULATION FOR THE NON-STATIONARY INCOMPRESSIBLE BOUSSINESQ EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(2): 385-393. |
[15] | Jinfang TANG, Shih-sen CHANG, Min LIU. GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(2): 602-613. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|