[1] Fan D, Wu Z. Norm estimates for iterated commutators on the Bergman spaces of the unit ball. Amer J Math, 1995, 117(2): 523--543
[2] Axler S. The Bergman space, the Bloch space, and commutators of multiplication operators. Duke Math J, 1986, 53(2): 315--332
[3] Xiao J. Boundedness and compactness for Hankel operators on A2(Φ). Adv in Math (China), 1993, 22(2): 146--159
[4] Békollé D, Berger C A, Coburn L A, et al. BMO in the Bergman metric on bounded symmetric domains. J Funct Anal, 1990, 93(2): 310--350
[5] Arazy J, Fisher S D, Janson S, et al. Membership of Hankel operators on the ball in unitary ideals. J London Math Soc (2), 1991, 43(3): 485--508
[6] Zhu K. BMO and Hankel operators on Bergman spaces. Pacific J Math, 1992, 155(2): 377--395
[7] Xiao J. Compactness for Toeplitz and Hankel operators on weighted Bergman spaces of ball in Cn. Sci China, Ser A, 1993, 36(10): 1153--1161
[8] Xiao J. Compactness of both Toeplitz and Hankel operators on the Bergman space A2. Chinese Ann Math (in Chinese), Ser A, 1994, 15(2): 145--154
[9] Liu Y, Hu Z. Boundedness for iterated commutators on the mixed norm spaces. J Math Anal Appl, 2007, 332(2): 787--797
[10] Zhang X, Xiao J, Hu Z. The multipliers between the mixed norm spaces in Cm. J Math Anal Appl, 2005, 311(2): 664--674
[11] Tan H. Weighted Bergman spaces and Carleson measures on the unit ball of Cn. Anal Math, 2000, 26(2): 119--132
[12] Ren G, Shi J. Bergman type operator on mixed norm spaces with applications. Chinese Ann Math, Ser B, 1997, 18(3): 265--276
[13] Timoney R M. Bloch functions in several complex variables I. Bull London Math Soc, 1980, 12(4): 241--267
[14] Zhu K. Spaces of Holomorphic Functions in the Unit Ball. New York: Springer, 2005
[15] Rudin W. Function Theory in the Unit Ball of Cn. New York-Berlin: Springer-Verlag, 1980
[16] Jevti$\acute{\hbox{c}}$ M. Bounded projections and duality in mixed-norm spaces of analytic functions. Complex Variables Theory Appl, 1987, 8(3/4): 293--301
[17] Gu D. Bergman projections and duality in weighted mixed-norm spaces of analytic functions. Michigan Math J, 1992, 39(1): 71--84
[18] Shi J. Duality and multipliers for mixed norm spaces in the ball I, II. Complex Variables Theory Appl, 1994, 25(2): 119--130; 131--157
[19] Shields A L, Williams D L. Bounded projections, duality, and multipliers in spaces of analytic functions. Trans Amer Math Soc, 1971, 162: 287--302
[20] Timoney R M. Bloch functions in several complex variables II. J Reine Angew Math, 1980, 319: 1--22 |