Acta mathematica scientia,Series B ›› 2010, Vol. 30 ›› Issue (6): 1975-2005.doi: 10.1016/S0252-9602(10)60186-5
• Articles • Previous Articles Next Articles
YANG Yi-Song
Received:
2010-08-10
Online:
2010-11-20
Published:
2010-11-20
Supported by:
This article is based on a talk under the same title given at the conference ``Differential and Topological Problems in Modern Theoretical Physics", SISSA, Trieste, Italy, April 26--30, 2010.
CLC Number:
YANG Yi-Song. ELECTRICALLY CHARGED SOLITONS IN GAUGE FIELD THEORY[J].Acta mathematica scientia,Series B, 2010, 30(6): 1975-2005.
[1] Actor A. Classical solutions of $SU(2)$ Yang--Mills theories. Rev Mod Phys, 1979, 51: 461--525 [4] Atiyah M F, Ward R S. Instantons and algebraic geometry. Commun Math Phys, 1977, 55: 117--124 [20] Chern S S, Simons J. Some cohomology classes in principal fiber bundles and their application to Riemannian geometry. Proc Nat Acad Sci USA, 1971, 68: 791--794 [21] Chern S S, Simons J. Characteristic forms and geometric invariants. Ann Math, 1974, 99: 48--69 [22] Cho Y M, Kimm K. Electroweak monopoles. Preprint, arXiv:hep-th/9705213. [23] Cho Y M, Maison D. Monopole configuration in Weinberg--Salam model. Phys Lett B, 1997, 391: 360--365 [30] Deser S, Jackiw R, Templeton S. Topologically massive gauge theories. Ann Phys, 1982, 140: 372--411 [31] Dirac P A M. Quantised Singularities in the electromagnetic field. Proc Royal Soc A, 1931, 133: 60--72 [32] Dunne G. Self-Dual Chern--Simons Theories. Lecture Notes in Physics, Vol 36. Berlin: Springer-Verlag, 1995 [35] Dziarmaga J. Low energy dynamics of [U(1)]N Chern--Simons solitons. Phys Rev D, 1994, 49: 5469--5479 [37] Felsager B. Geometry, Particles, and Fields. Berlin, New York: Springer-Verlag, 1998 [39] Fröhlich J, Marchetti P A. Quantum field theories of vortices and anyons. Comm Math Phys, 1989, 121: 177--223 [42] Gingras M J P. Observing monopoles in a magnetic analog of ice. Science, 2009, 26: 375--376 [47] Han J. Asymptotic limit for condensate solutions in the abelian Chern--Simons--Higgs model. Proc Amer Math Soc, 2003, 131: 1839--1845 [48] Han J, Huh H. Self-dual vortices in a Maxwell-Chern-Simons model with non-minimal coupling. Lett Math Phys, 2007, 82: 9--24 [49] Hirsch M. Differential Topology. New York, Heidelberg: Springer-Verlag,1976 [50] Hong J, Kim Y, Pac P Y. Multivortex solutions of the Abelian Chern--Simons--Higgs theory. Phys Rev Lett, 1990, 64: 2330--2333 [51] Horvathy P A, Zhang P. Vortices in (abelian) Chern-Simons gauge theory. Phys Rep, 2009, 481: 83--142 [52] Huh H. Local and global solutions of the Chern-Simons-Higgs system. J Funct Anal, 2007, 242: 526--549 [53] Humphreys J E. Introduction to Lie Algebras and Representation Theory. New York, Heidelberg: Springer-Verlag, 1972 [60] Jaffe A, Taubes C H. Vortices and Monopoles. Boston: Birkhäuser, 1980 [61] Jost J, Wang G. Analytic aspects of the Toda system. I. A Moser-Trudinger inequality. Comm Pure Appl Math, 2001, 54: 1289--1319 [62] Julia B, Zee A. Poles with both magnetic and electric charges in non-Abelian gauge theory. Phys Rev D, 1975, 11: 2227--2232 [63] Kao H C, Lee K. Self-dual SU(3) Chern--Simons Higgs systems. Phys Rev D, 1994, f50: 6626--6632 [64] Kawaguchi Y, Ohmi T. Splitting instability of a multiply charged vortex in a Bose--Einstein condensate. Phys Rev A, 2004, 70: 043610 [65] Khomskii D I, Freimuth A. Charged vortices in high temperature superconductors. Phys Rev Lett, 1995, 75: 1384--1386 [66] Kim C, Lee C, Kao P, Lee B H, Min H. Schrödinger fields on the plane with [U(1)]N Chern--Simons interactions and generalized self-dual solitons. Phys Rev D, 1993, 48: 1821--1840 [67] Kim N. Existence of vortices in a self-dual gauged linear sigma model and its singular limit. Nonlinearity, 2006, 19: 721--739 [68] Kontsevich M. Lecture Notes on Deformation Theory. Berkeley, 1995 [69] Kontsevich M. Formality conjecture//Gutt S, Rawnsley J, Sternheimer D, eds. Deformation Theory and Symplectic Geometry. Math Phys Stud 20. Dordrecht: Kluwer Acad Publ, 1997: 139--156 [71] Kubo R. Wigner representation of quantum operators and its applications to electrons in a magnetic field. J Phys Soc Japan, 1964, 19: 2127--2139 [72] Kumar C N, Khare A. Charged vortex of finite energy in nonabelian gauge theories with Chern--Simons term. Phys Lett B, 1986, 178: 395--399 [73] Lee K, Weinberg E J. Nontopological magnetic monopoles and new magnetically charged black holes. Phys Rev Lett, 1994, 73: 1203--1206 [74] Lai C H, ed. Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions. Singapore: World Scientific, 1981 [75] Lin C S, Ponce A C, Yang Y. A system of elliptic equations arising in Chern--Simons field theory. J Funct Anal, 2007, 247: 289--350 [76] Lin C S, Prajapat J V. Vortex condensates for relativistic abelian Chern-Simons model with two Higgs scalar fields and two gauge fields on a torus. Commun Math Phys, 2009, 288: 311--347 [77] Lucia M, Nolasco M. SU(3) Chern-Simons vortex theory and Toda systems. J Diff Eqs, 2002, 184: 443--474 [78] Macri M, Nolasco M, Ricciardi T. Asymptotics for self-dual vortices on the torus and on the plane: a gluing technique. SIAM J Math Anal, 2005, 37: 1--16 [79] Manton N. Complex structure of monopoles. Nucl Phys B, 1978, 135: 319--332 [80] Manton N, Sutcliffe P. Topological Solitons. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge Univ Press, 2004 [81] Matsuda Y, Nozakib K, Kumagaib K. Charged vortices in high temperature superconductors probed by nuclear magnetic resonance. J Phys Chem Solids, 2002, 63: 1061--1063 [83] Milnor J W. Topology from the Differentiable Viewpoint. Charlottesville: University Press of Virginia, 1965 [85] Morris DJ P, Tennant D A, Grigera S A, Klemke B, Castelnovo C, Moessner R, Czternasty C, Meissner M, Rule K C, Hoffmann J U, Kiefer K, Gerischer S, Slobinsky D, Perry R S. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science, 2009, 326: 411--414 [94] Preskill J. Vortices and monopoles//Architecture of Fundamental Interactions at Short Distances. Les Houches, Session XLIV, 1985. Elsevier, 1987: 235--337 [99] Schwinger J. Sources and magnetic charge. Phys Rev, 1968, 173: 1536--1544 [101] Sokoloff J B. Charged vortex excitations in quantum Hall systems. Phys Rev B, 1985, 31: 1924--1928 [106] Tarantello G. Multiple condensate solutions for the Chern--Simons--Higgs theory. J Math Phys, 1996, 37: 3769--3796 [111] Tchrakian D H. The 't Hooft electromagnetic tensor for Higgs fields of arbitrary isospin. Phys Lett B, 1980, 91: 415--416 [112] t Hooft G. Magnetic monopoles in unified gauge theories. Nucl Phys B, 1974, 79: 276--284 [114] de Vega H J, Schaposnik F. Vortices and electrically charged vortices in non-Abelian gauge theories. Phys Rev D, 1986, 34: 3206--3213 [115] Weinberg E J. Parameter counting for multimonopole solutions. Phys Rev D, 1979, 20: 936--944 [116] Wells R O. Differential Analysis on Complex Manifolds. New York, Berlin: Springer-Verlag, 1980 [117] Wilczek F. Quantum mechanics of fractional-spin particles. Phys Rev Lett, 1982, 49: 957--959 [118] Wilczek F. Fractional Statistics and Anyon Superconductors. Singapore: World Scientific, 1990 [121] Yang Y. The Lee--Weinberg magnetic monopole of unit charge: existence and uniqueness. Physica D, 1998, 117: 215--240 [122] ang Y. Coexistence of vortices and antivortices in an Abelian gauge theory. Phys Rev Lett, 1998, 80: 26--29 [123] Yang Y. Strings of opposite magnetic charges in a gauge field theory. Proc Roy Soc A, 1999, 455: 601--629 [125] Yang Y. On the deformation of some Lie algebras. Acta Math Sci, 1984, 4: 509--517 [128] Zwanziger D. Quantum field theory of particles with both electric and magnetic charges. Phys Rev, 1968, 176: 1489--1495 |
[1] | Daomin CAO, Shuangjie PENG, Shuangjie PENG. REGULARIZATION OF PLANAR VORTICES FOR THE INCOMPRESSIBLE FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1443-1467. |
|