[1] Yang C N. Some exact results for the many-body problem in one dimension with repulsive δ-function interaction. Phys Rev Lett, 1967, 19: 1312--1315
[2] Yang C N. S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys Rev Lett, 1968, 168: 1920--1923
[3] Baxter R J. Partition function of the eight-vertex lattice model. Ann Phys, 1972, 70: 193--288
[4] Zamolodchikov A B. Factorized S-matrices in two dimensions as the exact solution of certain relativistic quantum field theory models. Ann Phys, 1979, 120: 253--291
[5] Baxter R J. Exactly Solved Models in Statistical Mechanics. London: Academic, 1982
[6] Jimbo M. Yang-Baxter Equation in Integrable Systems. Singapore: World Scientific, 1989.
[7] Drinfel'd V G. Quantum groups. J Math Sci, 1988, 41(2): 898--915
[8] Alvarez-Gaumé L, C\'omez C, Sierra G G. Hidden quantum symmetries in rational conformal field theories.
Nucl Phys, 1989, 319: 155--186
[9] Frenkel B, Reshetikhin N Y. Quantum affine algebras and holonomic difference equations. Commu Math Phys, 1992, 146: 1--60
[10] Turaev V G. The Yang-Baxter equation and invariants of links. Inven Math, 1988, 92: 527--553
[11] Akutsu F Y, Wadati M. Knot invariants and the critical statistical systems. J Phys Soc Japan, 1987, 56: 839--842
[12] Fan C, Wu F Y. General lattice model of phase transitions. Phys Rev B, 1970, 2: 723--733
[13] Murakami J. A state model for the multivariable Alexander polynomial. Pacific J Math, 1993, 157: 109--135
[14] Cuerno R, G\'omez C, L\'opez E, Sierra G. The hidden quantum group of the 8-vertex free fermion model: q-Clifford algebras. Phys Lett B, 1993, 307: 56--60
[15] Murakami J. The free-Fermion model in presense of field related to the quantum group Uq(sl2) of affine type and the multi-vatiable Alexander polynomial of links. Int J Mod Phys A, 1992, 7: 765--773
[16] Ruiz-Altaba M. New solutions to the Yang-Baxter equation from two-dimensional representations of Uq(sl(2)) at roots of unity. Phys Lett B, 1992, 279: 326--332
[17] Wang S K. Classification of eight-vertex solutions of the coloured Yang-Baxter equation. J Phys A: Math Gen, 1996, 29: 2259--2277
[18] Bazhanov V V, Stroganov Y G. Hidden symmetry of free-fermion model. Theor Math Fiz, 1985, 62: 253--60
[19] Delius G W, Gould M D, Zhang Yaozhong. On the construction of trigonometric solutions of the Yang-Baxter equation. Nucl Phys B, 1994, 432: 377--403
[20] Bracken A J, Gould M D, Zhang Yaozhong, Delius G W. Solutions to the quantum Yang-Baxter equation with extra non-additive parameters. J Phys A, 1994, 27: 6551--6561
[21] Sun X D, Wang S K, Wu K. Classification of six-vertex-type solutions of the colored Yang-Baxter equation. J Math Phys, 1996, 36: 6043--6063
[22] Qiu C H, Wang T Z, Xu Y C. General solution of a kind of quantum coloured Yang-Baxter equation (I). J Math Anal, 2007, 326: 46--61
[23] Ma Z Q. Yang-Baxter Equation and Quantum Algebra. Beijing: Science Press, 1993 (in Chinese)
[24] Wu W -t. Basic Principles of Mechanical Theorem Proving in Geometry (Part on Elementary Geometries). Beijing: Science Press, 1984 (in Chinese); Mechanical Theorem Proving in Geometries, Basic Principles. Wien, New York: Springer, 1994
[25] Wu W -t. Basic principles of mechanical theorem proving in elementary geometries. J Syst Sci and Math Sci, 1984, 4: 207--235; also in: J Automat Reason, 1996, 2: 221--252
[26] Wu W -t. A zero structure theorem for polynomial-equations-solving and its applications. Math Mech Res, Preprints, 1987, 1: 2--12
[27] Wu W -t. On the decision problem and the mechanization of theorem-proving in elementary geometry. Sci Sinica, 1978, 21: 159--172
|