[1] Othmer H G, Stevens A. Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random
walks. SIAM J Appl Math, 1997, 57: 1044–1081
[2] Levine H A, Sleeman B D. A system of reaction diffusion equtions arising in the theory of reinforced
random walks. SIAM J Appl Math, 1997, 57: 683–730
[3] Sleeman B D, Levine H A. Partial differential equations of chemotaxis and angiogenesis. Math Methods
Appl Sci, 2001, 24: 405–426
[4] Yang Y, Chen H, Liu W A. On existence of global solutions and blow-up to a system of reaction-diffusion
equations modelling chemotaxis. SIAM J Math Anal, 2001, 33: 763–785
[5] Hillen T, Potapov A. The one-dimensional chemotaxis model: global existence and asymptotic profile.
Math Methods Appl Sci, 2004, 27: 1783–1801
[6] Levine H A, Sleeman B D, Hamilton M N. Mathematical modeling of the onset of capillary formation
initating angiogenesis. J Math Biol, 2001, 42: 195–238
[7] Zhang M, Zhu C -J. Global existence of solutions to a hyperbolic-parabolic system. Proc Amer Math Soc,
2007, 135(4): 1017–1027
[8] Kato S. On local and global existence theorems for a nonautonomous differential equtioan in a Banach
space. Funkcial Ekvac, 1976, 19: 279–286
[9] Nishida T. Nonlinear Hyperbolic Equtions and Related Topics in Fluid Dynamics. Publ Math, 1978
|