Acta mathematica scientia,Series B
• Articles • Previous Articles Next Articles
Wang Zhengping; Zhou Huansong
Received:
Revised:
Online:
Published:
Contact:
Abstract:
For the following elliptic problem -△ u - μu/|x|2={|u|2*(s)-2u}/|x|s+h(x), on RN u ∈ D1,2(RN), N≥3, 0≤μ<\bar\mu=(N-2)2 /4, 0≤ s<2, where 2*(s)=2(N-s)/(N-2) is the critical Sobolev-Hardy exponent, h(x)∈ D1,2(RN))* , the dual space of (D1,2(RN)), with h(x)≥(≠) 0. By Ekeland's variational principle, subsuper solutions and a Mountain Pass theorem, the authors prove that the above problem has at least two distinct solutions if ||h||*N,s As (n-s)/(4-2s)(1-μ/{\bar\mu})1/2,
CN,s=(4-2s)/(N-2) ((N-2)/(N+2-2s)(N+2-2s)/(4-2s) and As=inf u∈ D1,2(RN)\{0} {∫RN(|▽u|2-μu2/|x|2) dx}/{(∫RN|u|2*(s)/|x|s dx)2/2*(s)}.
Key words: Critical Sobolev-Hardy exponent, elliptic equation, Mountain Pass theorem, subsuper solutions, nonhomogeneous
CLC Number:
Wang Zhengping; Zhou Huansong. SOLUTIONS FOR A NONHOMOGENEOUS ELLIPTIC PROBLEM INVOLVING CRITICAL SOBOLEV-HARDY EXPONENT IN RN[J].Acta mathematica scientia,Series B, 2006, 26(3): 525-536.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(06)60078-7
http://121.43.60.238/sxwlxbB/EN/Y2006/V26/I3/525
Cited