[1] Dautray R, Lions J L. Mathematical analysis and numerical methods for science and technology//Physical Origins and Classical Methods. Berlin: Springer-Verlag, 1990
[2] Garcia Azorero J, Peral I. Hardy inequalities and some critical elliptic and parabolic problems. J Differential Equations, 1998, 144(2): 441–476
[3] Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving critical Sobolev and Hardy expo-nents. Trans Amer Math Soc, 2000, 352(12): 5703–5743
[4] Bartsch T, Peng S J, Zhang Z T. Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities. Calc Var, 2007, 30(1): 113–136
[5] Kang D S. Positive solutions to the weighted critical quasilinear problems. Appl Math Comput, 2009, 213(2): 432–439
[6] Huang X J, Wu X P, Tang C L. Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy–Sobolev exponents. Nonlinear Anal, 2011, 74(7): 2602–2611
[7] Chen Z J, Zou W M. On an elliptic problem with critical exponent and Hardy potential. J Differential Equations, 2012, 252(2): 969–987
[8] Deng Y B, Li Y, Yang F. On the positive radial solutions of a class of singular semilinear elliptic equations. J Differential Equations, 2012, 253(2): 481–501
[9] Kang D S. Solutions for the quasilinear elliptic problems involving critical Hardy-Sobolev exponents. Acta Mathematica Scientia, 2010, 30B(5): 1529–1540
[10] Yang F. Singular positive radial solutions for a general semilinear elliptic equation. Acta Mathematica Scientia, 2012, 32B(6): 2377–2387
[11] Sun X M. p-Laplace equations with multiple critical exponents and singular cylindrical potential. Acta Mathematica Scientia, 2013, 33B(4): 1099–1112
[12] Hsu T S. Multiple positive solutions for quasilinear elliptic problems involving concave-convex nonlinearities and multiple Hardy-type terms. Acta Mathematica Scientia, 2013, 33B(5): 1314–1328
[13] Lan Y Y, Tang C L. Perturbation methods in semilinear elliptic problems involving critical Hardy-Sobolev exponent. Acta Mathematica Scientia, 2014, 34B(3): 703–712
[14] Hsu T S, Li H L. Multiplicity of positive solutions for singular elliptic systems with critical Sobolev-Hardy and concave exponents. Acta Mathematica Scientia, 2011, 31B(3): 791–804
[15] Li Y X, Gao W J. Existence of multiple positive solutions for singular quasilinear elliptic system with critical Sobolev-Hardy exponents and concave-convex terms. Acta Mathematica Scientia, 2013, 33B(1): 107–121
[16] Nyamoradi N, Hsu T S. Existence of multiple positive solutions for semilinear elliptic systems involving mcritical Hardy-Sobolev exponents and m sign-changing weight function. Acta Mathematica Scientia, 2014, 34B(2): 483–500
[17] Shang Y Y. Existence and multiplicity of positive solutions for some Hardy-Sobolev critical elliptic equation with boundary singularities. Nonlinear Anal, 2012, 75(5): 2724–2734
[18] Waliullah S. Higher order singular problems of Caffarelli-Kohn-Nirenberg-Lin type. J Math Anal Appl, 2012, 385(2): 721–736
[19] Stinner C, Winkler M. Global weak solutions in a chemotaxis system with large singular sensitivity. Non-linear Anal RWA, 2011, 12(6): 3727–3740
[20] Deng Y B, Jin L Y. On symmetric solutions of a singular elliptic equation with critical Sobolev-Hardy exponent. J Math Anal Appl, 2007, 329(1): 603–616
[21] Deng Z Y, Huang Y S. On G-symmetric solutions of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. Nonlinear Anal RWA, 2011, 12(2): 1089–1102
[22] Deng Z Y, Huang Y S. On G-symmetric solutions of a quasilinear elliptic equation involving critical Hardy-Sobolev exponent. J Math Anal Appl, 2011, 384(2): 578–590
[23] Deng Z Y, Huang Y S. Existence and multiplicity of symmetric solutions for a class of singular elliptic problems. Nonlinear Anal RWA, 2012, 13(5): 2293–2303
[24] Bianchi G, Chabrowski J, Szulkin A. On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Anal, 1995, 25(1): 41–59
[25] Bartsch T, Willem M. Infinitely many Non-Radial Solutions of an Euclidean Scalar Field Equation. Hei-delberg: Mathematisches Institut/Universitat Heidelberg, 1992
[26] Chabrowski J. On the existence of G-symmetric entire solutions for semilinear elliptic equations. Rend Circ Mat Palermo, 1992, 41(3): 413–440
[27] Su J B, Wang Z Q. Sobolev type embedding and quasilinear elliptic equations with radial potentials. J Differential Equations, 2011, 250(1): 223–242
[28] Palais R. The Principle of Symmetric Criticality. Comm Math Phy, 1979, 69(1): 19–30
[29] Caffarelli L, Kohn R, Nirenberg L. First order interpolation inequality with weights. Compos Math, 1984, 53(3): 259–275
[30] Abdellaoui B, Peral I. The effect of Harnack inequality on the existence and nonexistence results for quasi-linear parabolic equations related to Caffarelli-Kohn-Nirenberg inequalities. Nonlinear Differ Equ Appl, 2007, 14(3): 335–360
[31] Lions P L. The concentration-compactness principle in the calculus of variations, The limit case. Rev Mat Iberoamericana, 1985, 1(1) (part I): 145–201; 1(2) (part II): 45–121
[32] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14(4): 349–381
[33] Brezis H, Nirenberg L. Postive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(4): 437–477
[34] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Miami: Amer Math Soc, 1986
[35] Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486–490
[36] Ekeland I. Nonconvex minimization problems. Bull Amer Math Soc, 1979, 1(3): 443–473 |