1 Bochner S. Vector fields and Ricci curvature. Bull Amer Math Soc, 1946, 52: 776-797
2 Bochner S. Curvature in Hermitian metric. Bull Amer Math Soc, 1947,53: 179-195
3 Yano K, Bochner S. Curvature and Betti Number. Princeton Univ Press, 1953
4 Wu H. Bochner technique in differential geometry. In: Proceedings of the 1980 Beijing symposium on
Differential Geometry and Differential Equations. Advances in Mathematics(China), 1981, 10(1): 57-76.
1982, 11(1):19-61
5 Bao D, Chern S S, Shen Z, eds. Finsler geometry (Proceedings of the Joint Summer Research Conference
on Finsler Geometry, July 16-20, 1995, Seattle, Washington). Cont Math, Vol. 196. Amer Math Soc,
Providence, RI, 1996
6 Bao D, Chern S S, Shen Z. An introduction to Riemann-Finsler geometry. New York: Springer-Verlag,
Inc, 2000
7 Chern S S. Finsler geometry is just Riemannian geometry without the quadratic restriction. AMS Notices,
1996, 43(9): 959-963
8 Abate M, Patrizio G. Finsler metric-A global approach. In: Lecture Notes in Math, Vol. 1591. Berlin,
Heidelberg: Springer-Verlag, 1994
9 Chern S S, Chern Weihuan. Lecture on Differential Geometry. Beijing: Beijing University Press, 1983
10 de Rham G. Vari´et´es Differentiables. Paris: Hermann, 1955
11 Centore P. A mean-value Laplacian for Finsler spaces. The theory of Finslerian Laplacians and applica-
tions, MAIA 459. Kluwer Academic Publishers, 1998. 151-186
12 Bao David, Lackey Brad. A Hodge decomposition theorem for Finsler spaces. C R Acad, Sci Paris, t. 323,
S´erie 1, 51-56,1996 |