1 Pinkus A. n-Widths in Approximation Theory. New York: Springer-Verlag, 1985. 1-247
2 Babenko K I. Approximation of multivariate periodic functions by trigonometric polynomials. DAH CCCP,
1960, 132(2):245-250 (In Russian)
3 Babenko K I. Theoretical basis and construction of numerical algorithms for problems of mathematical
physics. Moscow: Nauka, 1979. 1-150 (In Russian)
4 Mityagin B S. Approximation of functions in spaces of Lp and C on the torus. Mat Sbornik, 1962, 58(4):
397-414 (In Russian)
5 Sun Yongsheng. Estimation of width of a multivariate periodic Besov classes. Chinese Science Bulletin,
1994, 30(23): 2113-2115
6 Wang Heping, Sun Yongsheng. Representation and approximation of multivariate periodic function with
a bounded mixed modulus of smoothness. Proc of Steklov Math Ins, 1997, 219: 350-371
7 Luo Junbo, Liu Yongping. Average width and optimal recovery of some anisotropic classes of smooth
functions defined on the Euclidean space Rd. Northeast Math J, 1999, 15(4): 423-432
8 Magaril-Il’yaev G G. Average dimension, widths, andoptimal recovery of Sobolev classes of functions on
the real axis. Math Sbornik, 1991,182(11): 1635-1656 (In Russian)
9 Magaril-Il’yaev G G. Average widths of Sobolev classeson Rn. J Approx Theory, 1994, 76(1): 65-76
10 Nikol’skii S M. Approximation of Functions of Several Variables and Imbedding Theorems. New York:
Springer-Verlag, 1975. 81-140 |