[1]Ludwig D. The Radon transform on Euclidean space. Comm Pure Appl Math, 1966, 19: 49-81
[2]Natterer F. The Mathematics of Computerized Tomograph. Wiley-Teubner, 1987
[3]Smith K T, Solmon D C, Wagner S L. Practical and mathematical aspects of the problem of reconstructing objects from radiographs. Bull Amer Math Soc, 1977, 83: 1227-1270
[4]Smith K T, Keinert F. Mathematical foundation of computed tomography. Appl Optics, 1985, 24: 3950-3957
[5]Marr R B. On the reconstruction of a function on a circular domain from a sampling of its line integrals. J Math Anal Appl, 1974, 45: 357-374
[6]Quinto E T. Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform. J Math Anal Appl, 1983,95: 437-448
[7]Maass P. The interior Radon transform. SIAM J Appl Math, 1992, 52(3): 710-724
[8]Wang Jinping, Du Jinyuan. The numerical method of inversion for the interior Radon transform. Wuhan University J of Natural Sci, 2000, 5(2): 143-146
[9]Seeley R. Spherical harmonics. Amer Math Monthly, 1966, 73: 115-121
[10]Louis A K. Ghosts in tomography-the null space of the Radon transform. Math Meth Appl Sci, 1981, 3:1-10
[11]Gradshteyn I S, Ryzhik I. Tables of Integrals, Series and Products. Academic Press, 1965
[12]Abramowitz M, Stegum I A, eds. Handbook of Mathematical Functions. Dover, 1965
|