[1]Berger C A, Coburn L A, Zhu K H. Function theory on Cartan domains and the Berezin-Toeplitz symbolcalculus. Amer J Math, 1988, 110: 921-953
[2]Jevtic M. Two Carleson measure theorems for Hardy spaces. Proc of the Koniklijke Nederlangse Akadimievan-Wetenschappen Ser A, 1989, 92: 315-321
[3]Ouyang C H, Yang W S, Zhao R H. Characterizations of Bergman spaces and Bloch space in the unit ball of Cn. Trans Amer Math Soc, 1995, 347(11): 4301-4313
[4]Ouyang C H, Yang W S, Zhao R H. M¨obius invariant Qp spaces associated with the Green’s function on the unit ball of Cn. Pacific J Math, 1998, 182: 69-99
[5]Rudin W. Function Theory in the Unit Ball of Cn. New York: Springer-Verlag, 1980
[6]Stoll M. A Characterizations of Hardy spaces on the unit ball of Cn. J London Math Soc, 1993, 48:126-136
[7]Stoll M. Invariant potential theory in the unit ball of Cn. London Math Soc Lect Note Series 199,Cambridge Univ Press, 1994
[8]Ullrich D. Radial limits of M-subharmonic functions. Trans Amer Math Soc, 1985, 292: 501-518
[9]Yang W S. Some Characterizations of -Bloch spaces on the unit ball of Cn. Acta Math Sci, 1997, 17(4):471-477
[10]Yang W S. Vanishing Carleson type measure characterization of Qp,0. C R Math Rep Acad Sci Canada,1999, 21(1): 1-5
[11]Yang W S, Zhuo W X. Characterization of little -Bloch spaces on the unit ball of Cn. Bull HK Math Soc, 1999, 2: 213-221
[12]Zhao R H. On -Bloch functions and VMOA. Acta Math Sci, 1996, 16(3): 349-360
|