[1]Page E S. Control charts with warning lines. Biometrica, 1955, 42(2):241-257
[2]Page E S. Estimating the point of change in a continuous process. Biometrica, 1957,44:248-252; 241-257
[3]Speckman P. Kernel smoothing in partial linear models. J Roy Statist Soc Ser B, 1988, 50:413-436
[4]Shiau J H. Smoothing spline estimation of functions with discontinuities [Ph D dissertation]. Madison:Dept Statist Univ Wisconsin, 1985
[5]Muller H G. Change-points in nonparametric regression analysis. Ann Statist, 1992,20:737-761
[6]Yin Y Q. Detection of the number, locations and magnitudes of jumps. Commun Statist C, 1988,4:445-455
[7]Wu J S, Chui C K. Kernel type estimation of jump points and values of a regression function. Ann Statist,1993,21:1545-1566
[8]Wang Y. Jump and sharp cursp detection by wavelets. Biometrika, 1995, 82(2):385-397
[9]Luan L,Xie Z.The wavelet detection for the jump points of signals with additive stationary noises. Tech Rept No 29 of the Inst of Math Statist, Peking University, 1995
[10]Brillinger R David. Time series-data analysis and theory. San Francisco: Holden-Day Inc, 1981
[11]Cohen A, Daubechies I, Vial P. Wavelets on interval and fast wavelet trans forms. Appl Comp Harmon Anal, 1993, 1: 54-81
[12]Li Y, Xie Z. The wavelet detection of hidden periodicities in time series. Statist & Prob Lett, 1997, 35:9-23
|