[1]Garsia A. Continuity properties for multidimensional Gaussian process. Proc of the 6th Berkeley Symp on Math Stat
[2]Cuzick J. Multiple points of a Gaussian vector field. Z Wahrsch verw Gebiete, 1982, 61:247-264
[3]Dalang R C, Mountford T S. Points of increase of the Brownian sheet. Prob Th Rel Fields, 1997,108(1):1-27
[4]Davar Khoshevisan and Yimin. Level sets of addiditive L´evy process, Preprint, 1999
[5]Dvoretzky A, Erd¨os P, Katutani S. Multiple points of paths of Brownian motion in the plane. Bull Res Council Israel F, 1954,3: 364-371
[6]Ehm W. Sample function properties of the multi-parameter stable process. Z W, 1981, 56:195-228
[7]Hirsch R, Song S. Symmetric skorohod topology on n-parameter. Prob Th Rel Fields, 1995, 103:25-43
[8]Geman D, Horowitz J. Occupation densities. Ann Probab, 1980,8: 1-67
[9]Gean D, Horowitz J, Rosen J. A local time analysis of intersections of Brownian paths in the plane. Ann Probab, 1984,12: 86-107
[10]Walsh J B. Martingales with a multidimensional parameter and stochastic intergrals in the plane. Lecture Notes in Math, 1215. Berlin: Springer
[11]Rosen J. Self-intersection of random fields. Ann Prob, 1984,12:108-119
[12]Vares M E. Local time for two-parameter Le´vy process. Stocastic process and their application, 1983, 15:59-82
[13]Takano K. On some limit theorem of probability distributions. Annals of the Institute of Statistical Mathematics, 1954,6: 37-113
[14]Takeuchi J. On the sample paths of the symmetric stable process in space. J Math Soc Japan, 1964, 16:109-127
[15]Taylor S J. Multiple points for the sample paths of the symmetric stable process. Z Wahrsch verw Gebiete,1966,5:247-264
[16]Wolpert R. Wiener path intersections and local time. J Fnl Anal, 1978,30: 329-140
[17]Wolpert R. Wiener path intersections and local time. J Fnl Anal, 1978, 30: 329-340
[18]Zhong Yuquan, Xiao Yimin. Self-intersection local times and multi points of the stable sheet. Acta MathSci(Chinese), 1995, 15(2): 141-152
|