Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (3): 857-888.doi: 10.1016/S0252-9602(18)30789-6
• Articles • Previous Articles Next Articles
Yongting HUANG1, Hongxia LIU2
Received:
2017-04-13
Revised:
2017-10-16
Online:
2018-06-25
Published:
2018-06-25
Contact:
Yongting HUANG
E-mail:ythuang7-c@my.cityu.edu.hk
Supported by:
The second author is supported by the National Natural Science Foundation of China (11271160).
Yongting HUANG, Hongxia LIU. STABILITY OF RAREFACTION WAVE FOR A MACROSCOPIC MODEL DERIVED FROM THE VLASOV-MAXWELL-BOLTZMANN SYSTEM[J].Acta mathematica scientia,Series B, 2018, 38(3): 857-888.
[1] Caflisch R E, Nicolaenko B. Shock profile solutions of the Boltzmann equation. Comm Math Phys, 1982, 86(2):161-194 [2] Carrillo J A, Labrunie S. Global solutions for the one-dimensional Vlasov-Maxwell system for laser-plasma interaction. Math Methods Appl Sci, 2006, 16(1):19-57 [3] Cercignani C, Illner R, Pulvirenti M. The mathematical theory of dilute gases. Springer, 1994 [4] Chapman S, Cowling T G. The mathematical theory of non-uniform gases:an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge university press, 1970 [5] Cho Y, Choe H-J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl, 2004, 83(2):243-275 [6] Degond P. Mathematical modelling of microelectronics semiconductor devices. some current topics on nonlinear conservation laws. Stud Adv Math, 2000, 15:77-110 [7] Duan R J, Liu S Q, Yang T, Zhao H J. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinet Relat Models, 2013, 6(1):159-204 [8] Duan R J, Yang X F. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Comm Pure Appl Anal, 2013, 12(2):985-1014 [9] Duan R J. Green's function and large time behavior of the Navier-Stokes-Maxwell system. Anal Appl, 2012, 10(2):133-197 [10] Duan R J, Liu S Q. Global stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system. SIAM J Math Anal, 2015, 47(5):3585-3647 [11] Duan R J, Liu S Q. Stability of rarefaction waves of the Navier-Stokes-Poisson system. J Differential Equation, 2015, 258(7):2495-2530 [12] Duan R J, Liu S Q. The Vlasov-Poisson-Boltzmann system for a disparate mass binary mixture. J Stat Phys, 2017, 169(3):614-684 [13] Duan R J, Liu S Q. Yin H Y, Zhu C J. Stability of the rarefaction wave for a two-fluid plasma model with diffusion. Sci China Math, 2016, 59(1):67-84 [14] Duan R J, Strain R M. Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space. Comm Pure Appl Math, 2011, 64(11):1497-1546 [15] Glassey R, Schaeffer J. On the "one and one-half dimensional" relativistic Vlasov-Maxwell system. Math Meth Appl Sci, 1990, 13(2):169-179 [16] Glassey R T. The Cauchy problem in kinetic theory. SIAM, 1996 [17] Guo Y. The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent Math, 2003, 153(3):593-630 [18] Hou X F, Yao L, Zhu C J. Existence and uniqueness of global strong solutions to the Navier-Stokes-Maxwell system with large initial data and vacuum. Sci Sin Math, 2016, 46(7):945-996 [19] Huang F M, Xin Z P, Yang T. Contact discontinuity with general perturbations for gas motions. Adv Math, 2008, 219(4):1246-1297 [20] Huang F M, Yang T. Stability of contact discontinuity for the Boltzmann equation. J Differential Equations, 2006, 229(2):698-742 [21] Huang Y T. Spectrum structure and behavior of the Vlasov-Maxwell-Boltzmann system without angular cutoff. J Differential Equations, 2016, 260(3):2611-2689 [22] Jang J-H. Vlasov-Maxwell-Boltzmann diffusive limit. Arch Ration Mech Anal, 2009, 194(2):531-584 [23] Jiang M N, Lai S H, Yin H Y, Zhu C J. The stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. Acta Mathematica Scientia, 2016, 36B(4):1098-1116 [24] Levermore C D, Masmoudi N. From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system. Arch Ration Mech Anal, 2010, 196(3):753-809 [25] Li H L, Wang Y, Yang T, Zhong M Y. Stability of wave patterns to the bipolar Vlasov-Poisson-Boltzmann system. Arch Ration Mech Anal, 2018, 228(1):39-127 [26] Li H L, Yang T, Zhong M Y. Spectrum structure and behaviors of the Vlasov-Maxwell-Boltzmann systems. SIAM J Math Anal, 2016, 48(1):595-669 [27] Liu Q Q, Yin H Y, Zhu C J. Asymptotic stability of the compressible Euler-Maxwell equations to EulerPoisson equations. Indiana University Math J, 2014, 63(4):1085-1108 [28] Liu S Q, Yin H Y, Zhu C J. Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary. Comm Math Sci, 2016, 14(7):1859-1887 [29] Liu T-P, Yang Y, Yu S-H. Energy method for Boltzmann equation. Phys D, 2004, 188(3/4):178-192 [30] Liu T-P, Yang Y, Yu S-H, Zhao H J. Nonlinear stability of rarefaction waves for the Boltzmann equation. Arch Ration Mech Anal, 2006, 181(2):333-371 [31] Liu T-P, Yu S-H. Boltzmann equation:micro-macro decompositions and positivity of shock profiles. Comm Math Phys, 2004, 246(1):133-179 [32] Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3(1):1-13 [33] Ruan L Z, Yin H Y, Zhu C J, Stability of the superposition of rarefaction wave and contact discontinuity for the non-isentropic Navier-Stokes-Poisson equations with free boundary. Math Method Appl Sci, 2017, 40(5):2784-2810 [34] Smoller J. Shock waves and reaction-diffusion equations. Springer-Verlag, 1983 [35] Strain R M. The Vlasov-Maxwell-Boltzmann system in the whole space. Comm Math Phys, 2006, 268(2):543-567 [36] Xin Z P, Yang T, Yu H J. The Boltzmann equation with soft potentials near a local Maxwellian. Arch Ration Mech Anal, 2012, 206(1):239-296 [37] Yang T, Zhao H J. A new energy method for the Boltzmann equation. J Math Phys, 2006, 47(5):053301-19 [38] Yin H Y, Zhang J S, Zhu C J. Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system, Nonlinear Anal:Real World Appl, 2016, 14(3):735-776 [39] Yu S-H. Nonlinear wave propagations over a Boltzmann shock profile. J Amer Math Soc, 2010, 23(4):1041-1118 |
[1] | Dexing KONG, Qi LIU. GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 745-755. |
[2] | Yonghui ZHOU, Yunrui YANG, Kepan LIU. STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 1001-1024. |
[3] | Zhaoxing YANG, Guobao ZHANG. GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY [J]. Acta mathematica scientia,Series B, 2018, 38(1): 289-302. |
[4] | Hakho HONG, Teng WANG. ZERO DISSIPATION LIMIT TO A RIEMANN SOLUTION FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM OF GENERAL GAS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1177-1208. |
[5] | Guowei LIU. THE POINTWISE ESTIMATES OF SOLUTIONS FOR A NONLINEAR CONVECTION DIFFUSION REACTION EQUATION [J]. Acta mathematica scientia,Series B, 2017, 37(1): 79-96. |
[6] | Chunhua JIN, Tong YANG. TIME PERIODIC SOLUTION TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN A PERIODIC DOMAIN [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1015-1029. |
[7] | Lusheng WANG, Qinghua XIAO, Linjie XIONG, Huijiang ZHAO. THE VLASOV-POISSON-BOLTZMANN SYSTEM NEAR MAXWELLIANS FOR LONG-RANGE INTERACTIONS [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1049-1097. |
[8] | Mina JIANG, Suhua LAI, Haiyan YIN, Changjiang ZHU. THE STABILITY OF STATIONARY SOLUTION FOR OUTFLOW PROBLEM ON THE NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1098-1116. |
[9] | Zhengzi CAO, Huicheng YIN, Lin ZHANG, Lu ZHU. LARGE TIME ASYMPTOTIC BEHAVIOR OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN PARTIAL SPACE-PERIODIC DOMAINS [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1167-1191. |
[10] | Xiaohong QIN, Teng WANG, Yi WANG. GLOBAL STABILITY OF WAVE PATTERNS FOR COMPRESSIBLE NAVIER-STOKES SYSTEM WITH FREE BOUNDARY [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1192-1214. |
[11] | Shuhong CHEN, Boling GUO. CLASSICAL SOLUTIONS OF GENERAL GINZBURG-LANDAU EQUATIONS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 717-732. |
[12] | Renjun DUAN, Shuangqian LIU. TIME-PERIODIC SOLUTIONS OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J]. Acta mathematica scientia,Series B, 2015, 35(4): 876-886. |
[13] | Yunshun WU, Zhong TAN. ASYMPTOTIC BEHAVIOR OF THE STOKES APPROXIMATION EQUATIONS FOR COMPRESSIBLE FLOWS IN R3 [J]. Acta mathematica scientia,Series B, 2015, 35(3): 746-760. |
[14] | LUO Lan, ZHANG XinPing. GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(1): 140-156. |
[15] | XIAO Qing-Hua, CHEN Zheng-Zheng. DEGENERATE BOUNDARY LAYER SOLUTIONS TO THE GENERALIZED BENJAMIN-BONAMAHONY-BURGERS EQUATION [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1743-1758. |
|