[1] Lynch R T, Reis J J. Haar transform image coding. Proceedings of the National Telecommunications Conference, Dallas, TX, 1976, 44.3-1-44.3-5
[2] Reis J J, Lynch R T, Butman J. Adaptive Haar transform video bandwidth reduction system for RPVAs. Proceedings of Annual Meeting of Society of Photo-Optic Institute of Engineering (SPIE), San Dieago, CA, 1976:24-35
[3] Ohkita M, Kobayashi Y. An application of rationalized Haar functions to solution of linear differential equations. IEEE Trans Circuit Syst, 1986, 9:853-862
[4] Maleknejad K, Mirzaee F. Using Rationalized Haar wavelet for solving linear integral equations. Appl Math Comput, 2005, 160:579-587
[5] Maleknejad K, Mirzaee F. Numerical solution of linear Fredholm integral equations system by rationalized Haar functions method. Int J Comput Math, 2003, 8:1397-1405
[6] Rabbani M, Maleknejad K, Aghazadeh N, Mollapourasl R. Computational projection methods for solving Fredholm integral equation. Appl Math Comput, 2007, 191:140-143
[7] Li Y F, Yang S Z. A class of multiwavelets and projected frames from two-direction wavelets. Acta Math Sci, 2014, 34B(2):285-300
[8] Yang Q X. Characterization of multiplier spaces with Daubechies wavelets. Acta Math Sci, 2012, 32B(6):2315-2321
[9] Yang S Z, Shen Y F, Li Y F. A class of compactly supported orthogonal symmetric complex wavelets with dilation factor 3. Acta Math Sci, 2012, 32B(4):1415-1425
[10] Lu D Y, Li D F. A characterization of orthonormal wavelet frames in Sobolev spaces. Acta Math Sci, 2011, 31B(4):1475-1488
[11] Hagen R, Roch S, Silbermann B. C*-Algebras and Numberical Analysis. New York:Marcel Dekker Inc, 2001 |