[1] Ando T. Generalized Schur complements. Linear Algebra Appl, 1979, 27: 173–186
[2] Cvetkovi´c D S, Djordjevi´c D S, Rakoˇcevi´c V. Schur complement in C*-algebras. Mathematische Nachrichten(to appear)
[3] Drazin M P. Pseudoinverse in associative rings and semigroups. Amer Math Monthly, 1958, 65: 506–514
[4] Djordjevic D S, Stanimirovic P S. On the generalized Drazin inverse and generalized resolvent. Czech Math J, 2001, 51(126): 617–634
[5] Duncan W J. Some devicesfor the solution of large sets of simultaneous linear equations (with an appendix on the reciprocation of partitioned matrices). The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1944, 35: 660–670
[6] Quellette D V. Schur complements and statistics. Linear Algebra Appl, 1981, 36: 187–295
[7] Schur I. Uber Potenzreihen die im Innerr des Einheitskreises sind. J Reine Argew Math, 1917, 147: 205–234
[8] Wei Y. Expressions for the Drazin inverse of a 2 × 2 block matrix. Linear and Multilinear Algebra, 1998, 45: 131–146
[9] Wei Y. The Drazin inverse of a modified matrix. Appl Math Comput, 2002, 125: 295–301
[10] Wei Y, Wang G. The perturbation theory for the Drazin inverse and its applications. Linear Algebra Appl, 1997, 258: 179–186 |