[1] Ball J. A version of the fundamental theorem of Young measures// Rascle M, Serre D, Slemrod M, eds. PDEs and Continuum Models of Phase Transitions. Lecture Notes of Physics, 344. Springer-Verlag, 1989: 207-215
[2] Bers L. An existence theorem in two-dimensional gas dynamics//Proc Symposia Appl Math Vol 1. New York: Amer Math Soc, 1949: 41–46
[3] Bers L. Boundary value problems for minimal surfaces with singularities at infinity. Trans Amer Math Soc, 1951, 70: 465–491
[4] Bers L. Results and conjectures in the mathematical theory of subsonic and transonic gas flows. Comm Pure Appl Math, 1954, 7: 79–104
[5] Bers L. Existence and uniqueness of a subsonic flow past a given profile. Comm Pure Appl Math, 1954, 7: 441–504
[6] Bers L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics. New York: John Wiley & Sons, Inc; London: Chapman & Hall, Ltd, 1958
[7] Chen G -Q. Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (III). Acta Math Sci, 1986, 6: 75-120 (in English); 1988, 8: 243–276 (in Chinese)
[8] Chen G -Q. The compensated compactness method and the system of isentropic gas dynamics. Lecture Notes, Preprint MSRI-00527-91, Berkeley, October 1990
[9] Chen G -Q. Compactness methods and nonlinear hyperbolic conservation laws//AMS/IP Stud Adv Math 15. Providence, RI: Amer Math Soc, 2000: 33–75
[10] Chen G -Q. Euler equations and related hyperbolic conservation laws//Dafermos C M, Feireisl E. Hand-book of Differential Equations, Vol 2. Amsterdam: Elsevier Science B V, 2006: 1–104
[11] Chen G -Q, Frid H. Divergence-measure fields and hyperbolic conservation laws. Arch Ration Mech Anal, 1999, 147: 89–118
[12] Chen G -Q, LeFloch Ph G. Compressible Euler equations with general pressure law. Arch Ration Mech Anal, 2000, 153: 221–259
[13] Chen G -Q, LeFloch Ph G. Existence theory for the isentropic Euler equations. Arch Ration Mech Anal, 2003, 166: 81–98 |