[1] Donnat P, Rauch J. Dispersive nonlinear geometric optics. J Math Phys, 1997, 38: 1484–1523
[2] Donnat P, Joly J -L, Métiver G, Rauch J. Diffractive nonlinear geometric optics. Seminaire Équations aux Deriv´ees Partielles 1995-96, École Polyt´echnique, XVII-1 to XVII-23
[3] Friedrichs K -O. On the identity of weak and strong extensions of differential operators. Trans Amer Math Soc, 1944, 55: 132–151
[4] Friedrichs K -O. Symmetric hyperbolic linear differential equations. Comm Pure Appl Math, 1954, 7: 345–392
[5] Friedrichs K -O, Lax P D. Systems of conservation laws with a convex extension. Proc Nat Acad Sci, 1971, 68: 1686–1688
[6] Gärding L. Linear hyperbolic partial differential equations with constant coefficients. Acta Math, 1951, 85: 1–62
[7] H¨ormander L. The Analysis of Linear Partial Differential Operators Vol II. Berlin: Springer-Verlag, 1983
[8] Joly J -L,Métiver G, Rauch J. Coherent and focusing multidimensional nonlinear geometric optics. Annales de L’École Normale Sup´erieur, 1995, 28: 59–113
[9] Joly J -L, Métiver G, Rauch J. Coherent nonlinear waves and the Wiener algebra. Annales de L’Institut Fourier, 1994, 44: 167–196
[10] Joly J -L, Métiver G, Rauch J. Diffractive nonlinear geometric optics with rectification. Indiana Univ Math J, 1998, 47: 1167–1242
[11] Joly J -L, Métiver G, Rauch J. Hyperbolic domains of determination and Hamilton-Jacobi equations. J Hyper Part Differ Equ, 2005, 2: 713–744
[12] Lannes D. Dispersive effects for nonlinear geometrical optics with rectification. Aympt Anal, 1998, 18: 11–146
[13] Lax P D. Asymptotic solutions of oscillatory initial value problems. Duke Math J, 1957, 24: 627–646
[14] Lax P D, Phillips R. Local boundary conditions for dissipative symmetric linear differential operators. Comm Pure Appl Math, 1960, 13: 427–455
[15] Leray J. Hyperbolic Differential Equations. Institute for Advanced Study, 1953
[16] Ludwig D. Conical refraction in crystal optics and hydromagnetics. Comm Pure Appl Math, 1961, 14: 113–124
[17] Mizohata S. Lectures on the Cauchy Problem. Tata Institute Lectures on Mathematics and Physics No 35. Bombay: Tata Institute of Fundamental Research, 1965
[18] M´etivier G. The Mathematics of Nonlinear Optics. Handbook of Differential Equations: Evolutionary Equations, Vol V. Amsterdam: Elsevier/North-Holland, 2009: 169–313
[19] Rauch J. Lectures on Geometric Optics//Caffarelli L,Weinan E, eds. Hyperbolic Equations and Frequency Interactions. IAS/Park City Mathematics Series, Volume V. Amer Math Soc, 1999: 383–466
[20] Rauch J. Hyperbolic Partial Differential Equations and Geometric Optics. Graduate Texts inMathematics. Amer Math Soc, to appear |