[1] Albrecht A, Tuok, N. Evolution of cosmic string. Physics Review Letters, 1985, 54: 1868--1871
[2] Alvarez L, Guichard F, Lions P L, Morel J M. Axioms and fundamental equations of image processing. Arch Rational Mech Anal, 1993, 123: 199--257
[3] Angenent S, Gurtin M E. Multiplhase thermomechanics with an interfacial structure 2. evolution of an isothermal interface. Arch Rational Mech Anal, 1989, 108: 323--391
[4] Cao F. Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics 1805. Berlin: Springer, 2003
[5] Christodoulou D. Global solution of nonlinear hyperbolic equations for small initial data. Comm Pure Appl Math, 1986, 39: 367--282
[6] DeTurck D. Some regularity theorems in Riemannian geometry. Ann Scient Ecole Norm Sup Paris, 1981, 14: 249--260
[7] Gage M, Hamilton R. The heat equation shrinking convex plane curves. J Diff Geom, 1986, 23: 417--491
[8] Grayson M. Shortening embedded curves. Ann Math, 1989, 101: 71--111
[9] Gurtin M E, Podio-Guidugli P. A hyperbolic theory for the evolution of plane curves. SIAM J Math Anal, 1991, 22: 575--586
[10] Hadamard J. Le problème de Cauchy et lesèquations aux dèrivèes partielles linèaries hyperboliques. Paris: Hermann, 1932
[11] He C -L, Kong D -X, Liu K -F. Hyperbolic mean curvature flow. J Differ Equs, 2009, 246: 473--390
[12] Hòmander L. Lectures on Nonlinear Hyperbolic Differential Equations. Math\'{e}matiques And Applications 26. Berlin: Springer-Verlag, 1997
[13] Huisken G. Asymptotic behavior for singularities of the mean curvature flow. J Diff Geom, 1990, 31: 285--299
[14] Huisken G, Ilmanen T. The inverse mean curvature flow and the Riemannian Penrose inequality.
J Diff Geom, 2001, 59: 353--437
[15] Klainerman S. Global existence for nonlinear wave equations. Comm Pure Appl Math, 1980, 33: 43--101
[16] Kong D -X. Maximum principle in nonlinear hyperbolic systems and its applications. Nonlinear Analysis, Theory, Method \& Applications, 1998, 32: 871--880
[17] Kong D -X, Hu H -R. Geometric approach for finding exact solutions to nonlinear partial differential equations. Physics Letters A, 1998, 246: 105--112
[18] Kong D -X, Zhang Q, Zhou Q. The dynamics of relativistic string moving in the Minkowski space R1+n. Commun Math Phys, 2007, 269: 153--174
[19] LeFloch P G, Smoczyk K. The hyperbolic mean curvature flow. http://arxiv.org/arXiv:0712.0091v1, 2007
[20] Lewy H. Ueber das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhangigen Veranderlichen. Math Annal, 1928, 98: 179--191
[21] Liu K. Hyperbolic geometric flow. Lecture at International Conference of Elliptic and Parabolic Differential Equations, Hangzhou, August 20, 2007. Available at preprint webpage of Center of Mathematical Science, Zhejiang University
[22] Nishida T. Nonlinear hyperbolic equations and related topics in fluid dynamics. Publications Mathèmatiqèes Dòsay 78--02, Paris-Sud, 1978
[23] Protter M H, Weinberger H F. Maximum Principles in Differential Equations. New York: Springer-Verlag, 1984
[24] Rotstein H G, Brandon S, Novick-Cohen A. Hyperbolic flow by mean curvature. Journal of Crystal Growth, 1999, 198/199: 1256--1261
[25] Schneider R. Convex Bodies: The Brum-Minkowski Theory. Cambridge: Cambridge University Press, 1993
[26] Tso K. Deforming a hypersurface by its Gauss-Kronecker curvature. Commu Pure Appl Math, 1985, 38: 867--882
[27] Tsuji M. Formation of singularties for Monge-Ampère equations. Bull Sci Math, 1995, 119: 433--457
[28] Turok N, Bhattacharjee P. Stretching cosmic strings. Physical Review D, 1983, 29: 1557--1562
[29] Tynitskii D V. The Cauchy problem for a hyperbolic Monge-Ampère equation. Mathmatical Notes, 1992, 51: 582--589
[30] Yau S -T. Review of geometry and analysis. Asian J Math, 2000, 4: 235--278
[31] Zhu X -P. Lectures on Mean Curvature Flows. Studies in Advanced Mathematics 32. AMS/IP, 2002
|