[1] Grojnowski I. Representations of affine Hecke algebras and affine quantum GLn at roots of unity. Inter Math Res Notices, 1994, 5: 213--216
[2] Kazhdan D, Lusztig G. Representations of Coxeter groups and Hecke algebras. Invent Math, 1979, 53: 165--184
[3] Kazhdan D, Lusztig G. Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent Math, 1987, 87: 153--215
[4] Lusztig G. Singularities, character formulas, and a q-analog of weight multiplicities. Ast\'erisque, 1983, 101/102: 208--227
[5] Lusztig G. Cells in affine Weyl groups//Algebraic Groups and Related Topics. Advanced Studies in Pure Math, Vol 6. Kinokuniya and North Holland, 1985: 255--287
[6] Lusztig G. Cells in affine Weyl groups, II. J Alg, 1987, 109: 536--548
[7] Lusztig G. Leading coefficients of character values of Hecke algebras. Proc Sympos Pure Math Vol 47, Part 2.
Providence R I: Amer Math Soc, 1987: 235--262
[8] Lusztig G. Cells in affine Weyl groups IV. J Fac Sci Univ Tokyo Sect IA Math, 1989, 36: 297--328
[9] Stuler U. Unipotente und nilpotente Klassen in einfach Gruppen und Lie algebren vom Typ G2. Indag Math, 1971, 33: 365--378.
[10] Xi N. The based ring of the lowest two-sided cell of an affine Weyl group. J Alg, 1990, 134: 356--368
[11] Xi N. Representations of Affine Hecke Algebras. Lecture Notes in Mathematics, 587. Berlin: Springer-Verlag, 1994
[12] Xi N. The based ring of the lowest two-sided cell of an affine Weyl group, II. Ann Sci Éc Norm Sup, 1994, 27: 47--61
[13] Xi N. Representations of affine Hecke algebras and based ring of affine Weyl groups. J Amer Math Soc, 2007, 20: 211--217
|