[1] Ambrosetti A, Malchiodi A.Perturbation Methods and Semilinear Elliptic Problems on  . Basel: Birkhauser, 2006 [2] Bardos C, Golse F, Gottlieb A D, Mauser N J. Mean field dynamics of fermions and the time-dependent hartree-fock equation. Journal de Mathématiques Pures et Appliquées, 2003, 82(6): 665-683 [3] Bellazzini J, Jeanjean L, Luo T. Existence and instability of standing waves with prescribed norm for a class of schrödinger-poisson equations. Proceedings of the London Mathematical Society, 2013, 107(2): 303-339 [4] Benci V, Fortunato D. Solitary waves of the nonlinear klein-gordon equation coupled with the maxwell equations. Reviews in Mathematical Physics, 2002, 14(4): 409-420 [5] Benguria R, Brézis H, Lieb E H. The thomas-fermi-von weizsäcker theory of atoms and molecules. Communications in Mathematical Physics, 1981, 79(2): 167-180 [6] Cerami G. Some nonlinear elliptic problems in unbounded domains. Milan Journal of Mathematics, 2006, 1(74): 47-77 [7] Chen S, Tang X, Yuan S. Normalized solutions for schrödinger-poisson equations with general nonlinearities. Journal of Mathematical Analysis and Applications, 2020, 481(1): 123447 [8] Georgiev V, Prinari F, Visciglia N. On the radiality of constrained minimizers to the Schrödinger-Poisson-Slater energy. Annales de l'Institut Henri Poincaré C, 2012, 29(3): 369-376 [9] Gidas B, Ni W, Nirenberg L. Symmetry and related properties via the maximum principle. Communications in Mathematical Physics, 1979, 68(3): 209-243 [10] Hajaiej H, Song L.Uniqueness of normalized ground states for NLS models. arXiv:2302.09681 [11] Kwong M K. Uniqueness of positive solutions of u- u+ up= 0 in rn. Archive for Rational Mechanics and Analysis, 1989, 105(3): 243-266 [12] Lieb E H. Existence and uniqueness of the minimizing solution of choquard's nonlinear equation. Studies in Applied Mathematics, 1977, 57(2): 93-105 [13] Lieb E H, Simon B. The thomas-fermi theory of atoms, molecules and solids. Advances in Mathematics, 1977, 23(1): 22-116 [14] Lions P L. Solutions of Hartree-Fock equations for Coulomb systems. Commun Math Phys, 1987, 109: 33-97 [15] Lions P L. The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 1984, 1(2): 109-145 [16] Lopes O, Mariş M. Symmetry of minimizers for some nonlocal variational problems. Journal of Functional Analysis, 2008, 254(2): 535-592 [17] Mauser N J. The schrödinger-poisson-x equation. Applied mathematics letters, 2001, 14(6): 759-763 [18] Soave N. Normalized ground states for the nls equation with combined nonlinearities. Journal of Differential Equations, 2020, 269(9): 6941-6987 [19] Song L. Existence and orbital stability/instability of standing waves with prescribed mass for the  -supercritical NLS in bounded domains and exterior domains. Calc Var Partial Differential Equations, 2023, 62(6): Art 176 [20] Song L. Properties of the least action level, bifurcation phenomena and the existence of normalized solutions for a family of semi-linear elliptic equations without the hypothesis of autonomy. Journal of Differential Equations, 2022, 315: 179-199 [21] Song L, Hajaiej H.A new method to prove the existence, non-existence, multiplicity, uniqueness, and orbital stability/instability of standing waves for nls with partial confinement. arXiv:2211.10058 [22] Song L, Hajaiej H. Threshold for existence, non-existence and multiplicity of positive solutions with prescribed mass for an NLS with a pure power nonlinearity in the exterior of a ball. Z Angew Math Phys, 2024, 75(3): Art 99 [23] Zhao L, Zhao F. On the existence of solutions for the schrödinger-poisson equations. Journal of Mathematical Analysis and Applications, 2008, 346(1): 155-169 |