Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1841-1864.doi: 10.1007/s10473-023-0422-y
Previous Articles Next Articles
Qianqian BAI1, Xiaoguang LI2, Li ZHANG2,†
Received:
2022-02-23
Published:
2023-08-08
About author:
Qianqian BAI, E-mail: 1370733971@qq.com; Xiaoguang LI, E-mail: Lixgmath@163.com
Supported by:
Qianqian BAI, Xiaoguang LI, Li ZHANG. BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHR ÖDINGER EQUATIONS IN THE RADIAL CASE∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1841-1864.
[1] Bergé L. Wave collapse in physics: principles and applications to light and plasma waves. Physics Reports,1998, 303(5/6): 259-370 [2] Cho Y, Ozawa T. Sobolev inequalities with symmetry. Commun Contemp Math, 2009, 11(3): 355-365 [3] Dinh V D. Blowup of $H^{1}$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal,2018, 174: 169-188 [4] Dinh V D. Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction. Nonlinear Anal, 2020, 190: 111589 [5] Du D P, Wu Y F, Zhang K J. On blow-up criterion for the nonlinear Schrödinger equation. Discrete Contin Dyn Syst,2016, 36(7): 3639-3650 [6] Fanelli L, Montefusco E. On the blow-up threshold for weakly coupled nonlinear Schrödinger equations. J Phys A: Math Theor,2007, 40(47): 14139-14150 [7] Ginibre J, Velo G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J Funct Anal,1979, 32(1): 1-32 [8] Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys,1977, 18(9): 1794-1797 [9] Holmer J, Roudenko S. Divergence of infinite-variance nonradial solutions to the 3D NLS equation. Commun Partial Diff Equ, 2010, 35(5): 878-905 [10] Li X G, Wu Y H, Lai S Y. A sharp threshold of blow-up for coupled nonlinear Schrödinger equations. J Phys A: Math Theor,2010, 43(16): 165205 [11] Menyuk C. Nonlinear pulse propagation in birefringent optical fibers. IEEE J Quantum Electron, 1987, 23(2): 174-176 [12] Ogawa T, Tsutsumi Y. Blow-up of $H^{1}$ solution for the nonlinear Schrödinger equation. J Differ Equ,1991, 92(2): 317-330 [13] Ogawa T, Tsutsumi Y. Blow-up of $H^{1}$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity. Proc Amer Math Soc,1991, 111(2): 487-496 [14] Roberts D C, Newell A C. Finite-time collapse of $N$ classical fields described by coupled nonlinear Schrödinger equations. Phys Rev E,2006, 74(4): 047602 [15] Wang Z, Cui S B. On the cauchy problem of a coherently coupled Schrödinger system. Acta Math Sci,2016, 36B(2): 371-384 [16] Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun Math Phys,1983, 87(4): 567-576 [17] Zeng X Y, Zhang Y M, Zhou H S. Existence and stability of standing waves for a coupled nonlinear Schrödinger system. Acta Math Sci,2015, 35B(1): 45-70 [18] Zhang J. Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations. Nonlinear Anal,2002, 48(2): 191-207 |
[1] | Yansheng ZHONG, Yongqing LI. MULTIPLE POSITIVE SOLUTIONS TO A CLASS OF MODIFIED NONLINEAR SCHRÖDINGER EQUATION IN A HIGH DIMENSION∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1819-1840. |
[2] | Qianqian BAI, Xiaoguang LI, Li ZHANG. BLOW-UP SOLUTIONS OF TWO-COUPLED NONLINEAR SCHR ÖDINGER EQUATIONS IN THE RADIAL CASE∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1852-1864. |
[3] | Qing Guo, Leiga Zhao. POSITIVE SOLUTIONS WITH HIGH ENERGY FOR FRACTIONAL SCHRÖDINGER EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1116-1130. |
[4] | Xuemei Zhang, Shikun Kan. SUFFICIENT AND NECESSARY CONDITIONS ON THE EXISTENCE AND ESTIMATES OF BOUNDARY BLOW-UP SOLUTIONS FOR SINGULAR p-LAPLACIAN EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1175-1194. |
[5] | Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 736-750. |
[6] | Changxing MIAO, Junyong ZHANG, Jiqiang ZHENG. A NONLINEAR SCHRÖDINGER EQUATION WITH COULOMB POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2230-2256. |
[7] | Chao Jiang, Zuhan Liu, Ling Zhou. BLOW-UP IN A FRACTIONAL LAPLACIAN MUTUALISTIC MODEL WITH NEUMANN BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1809-1816. |
[8] | Guotao WANG, Zedong YANG, Jiafa XU, Lihong ZHANG. THE EXISTENCE AND BLOW-UP OF THE RADIAL SOLUTIONS OF A ${(k_{1},k_{2})}$-HESSIAN SYSTEM INVOLVING A NONLINEAR OPERATOR AND GRADIENT [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1414-1426. |
[9] | Ning-An LAI, Wei XIANG, Yi ZHOU. GLOBAL INSTABILITY OF MULTI-DIMENSIONAL PLANE SHOCKS FOR ISOTHERMAL FLOW [J]. Acta mathematica scientia,Series B, 2022, 42(3): 887-902. |
[10] | Edcarlos D. SILVA, Jefferson S. SILVA. QUASILINEAR EQUATIONS USING A LINKING STRUCTURE WITH CRITICAL NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2022, 42(3): 975-1002. |
[11] | Banghe LI. UNDERSTANDING SCHUBERT'S BOOK (II) [J]. Acta mathematica scientia,Series B, 2022, 42(1): 1-48. |
[12] | Hua CHEN, Nian LIU. ON THE EXISTENCE WITH EXPONENTIAL DECAY AND THE BLOW-UP OF SOLUTIONS FOR COUPLED SYSTEMS OF SEMI-LINEAR CORNER-DEGENERATE PARABOLIC EQUATIONS WITH SINGULAR POTENTIALS [J]. Acta mathematica scientia,Series B, 2021, 41(1): 257-282. |
[13] | Zongguang LI, Rui LIU. BLOW-UP SOLUTIONS FOR A CASE OF b-FAMILY EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(4): 910-920. |
[14] | Guangwu WANG, Boling GUO. A BLOW-UP CRITERION OF STRONG SOLUTIONS TO THE QUANTUM HYDRODYNAMIC MODEL [J]. Acta mathematica scientia,Series B, 2020, 40(3): 795-804. |
[15] | Van Duong DINH. STRONG INSTABILITY OF STANDING WAVES FOR A SYSTEM NLS WITH QUADRATIC INTERACTION [J]. Acta mathematica scientia,Series B, 2020, 40(2): 515-528. |
|