[1] Audrito A, Vázquez J L. The Fisher-KPP problem with doubly nonlinear diffusion. J Differential Equations, 2017, 263: 7647-7708 [2] Barenblatt G I. On self-similar motions of a compressible fluid in a porous medium. Akad Nauk SSSR Prikl Mat Meh, 1952, 16: 679-698 [3] Barna I F. Self-similar solutions of three-dimensional N avier- S tokes equation. Commun Theoretical Physics, 2011, 56: 745-750 [4] Bidaut-Véron M F. Self-similar solutions of the p- L aplace heat equation: the fast diffusion case. Pacific J Mathematics, 2006, 227: 201-270 [5] Bidaut-Véron M F. Self-similar solutions of the - L aplace heat equation: the case when   . Proc Royal Soc Edinb, 2009, 139: 1-43 [6] Bizoń P, Breitenlohner P, Maison D, Wasserman A. Self-similar solutions of the cubic wave equation. Nonlinearity, 2009, 23: 225-236 [7] Bizoń P, Maison D, Wasserman A.Self-similar solutions of semilinear wave equations with a focusing nonlinearity. Nonlinearity , 2007, 20: 2061-2074 [8] Chen X, Qi Y, Wang M. Self-similar singular solutions of a - L aplacian evolution equation with absorption. J Differential Equations, 2003, 190: 1-15 [9] Han Y, Gao W. Extinction and non-extinction for a polytropic filtration equation with a nonlocal source. Applicable Analysis, 2013, 92: 636-650 [10] Jin C, Yin J. Critical exponents and non-extinction for a fast diffusive polytropic filtration equation with nonlinear boundary sources. Nonlinear Analysis, 2007, 67: 2217-2223 [11] Jin C, Yin J, Ke Y. Critical extinction and blow-up exponents for fast diffusive polytropic filtration equation with sources. Proc Edinb Math Soc, 2009, 52: 419-444 [12] Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Mathematica, 1934, 63: 193-248 [13] Li H, Han Y, Gao W. Critical extinction exponents for polytropic filtration equations with nonlocal source and absorption. Acta Mathematica Scientia, 2015, 35B: 366-374 [14] Li Z, Mu C. Critical exponents for a fast diffusive polytropic filtration equation with nonlinear boundary flux. J Math Anal Appl, 2008, 346: 55-64 [15] Mi Y, Mu C, Li Z. Global existence and nonexistence of the non- N ewtonian polytropic filtration equations coupled with nonlinear boundary conditions. Applicable Analysis, 2010, 89: 1789-1803 [16] Mi Y, Wang X, Mu C. Blow-up set for the non-Newtonian polytropic filtration equation subjected to nonlinear Neumann boundary condition. Applicable Analysis, 2013, 92: 1332-1344 [17] Nečas J, Růžička M, Šverák V. On L eray's self-similar solutions of the N avier- S tokes equations. Acta Mathematica, 1996, 176: 283-294 [18] Tsai T. On L eray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch Ration Mech Anal, 1998, 143: 29-51 [19] Tsai T. Forward discretely self-similar solutions of the N avier-Stokes equations. Commun Math Phys, 2014, 328: 29-44 [20] Wang J, Gao W, Su M.Periodic solutions of non- N ewtonian polytropic filtration equations with nonlinear sources. Appl Math Comp, 2010, 216: 1996-2009 [21] Wang Y, Yin J. Critical extinction exponents for a polytropic filtration equation with absorption and source. Math Meth Appl Sci, 2013, 36: 1591-1597 [22] Wang Z, Yin J, Wang C. Critical exponents of the non- N ewtonian polytropic filtration equation with nonlinear boundary condition. Applied Mathematics Letters, 2007, 20: 142-147 [23] Xu T, Ji S, Mei M, Yin J. Convergence to sharp traveling waves of solutions for Burgers-Fisher-KPP equations with degenerate diffusion. J Nonlinear Sci, 2024, 34: Art 44 [24] Ye H, Yin J. Uniqueness of self-similar very singular solution for non-newtonian polytropic filtration equations with gradient absorption. Electr J Differential Equations, 2015, 83: 1-9 [25] Yin J, Li J, Jin C. Non-extinction and critical exponent for a polytropic filtration equation. Nonlinear Analysis, 2009, 71: 347-357 [26] Zheng P, Mu C. Extinction and decay estimates of solutions for a polytropic filtration equation with the nonlocal source and interior absorption. Math Meth Appl Sci, 2013, 36: 730-743 [27] Zheng P, Mu C, Ahmed I. Cauchy problem for the non- N ewtonian polytropic filtration equation with a localized reaction. Applicable Analysis, 2014, 94: 153-168 [28] Zhou J, Mu C. Critical blow-up and extinction exponents for non- N ewton polytropic filtration equation with source. Bull Korean Math Soc, 2009, 46: 1159-1173 |