[1] Alazard T. Low Mach number limit of the full Navier-Stokes equations. Arch Rat Mech Anal, 2006, 180: 1-73 [2] Bresch D, Desjardins B, Grenier E, Lin C K. Low Mach number limit of viscous ploytropic flows: Formal asymptotics in the periodic case. Stud Appl Math, 2002, 109: 125-140 [3] Bresch D, Desjardins B, Lin C K. On some compressible fluid models: Korteweg, lubrication and shallow water system. Commun Partial Diff Eqs, 2003, 28: 843-868 [4] Chikami N, Kobayashi T. Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces. J Math Fluid Mech, 2019, 21(2): Art 31 [5] Danchin R, Desjardins B. Existence of solutions for compressible fluid models of Korteweg type. Ann Inst H Poincaré Anal Non Linéaire, 2001, 18: 97-133 [6] Danchin R. Low Mach number limit for compressible flows with periodic boundary conditions. Amer J Math, 2002, 124: 1153-1219 [7] Desjardins B, Grenier E. Low Mach number limit of viscous compressible flows in the whole space. R Soc Lond Proc Ser A Math Phys Eng Sci, 1999, 455: 2271-2279 [8] Desjardins B, Grenier E, Lions P L, Masmoudi N. Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J Math Pures Appl, 1999, 78(9): 461-471 [9] Dunn J E, Serrin J. On the thermodynamics of interstitial working. Arch Ration Mech Anal, 1985, 88: 95-133 [10] Hagstrom T, Lorenz J. All-time existence of smooth solutions to PDEs of mixed type and the invariant subspace of uniform states. Adv Appl Math, 1995, 16: 219-257 [11] Hagstrom T, Lorenz J. All-time existence of classical solutions for slightly compressible flows. SIAM J Math Anal, 1998, 29: 652-672 [12] Hagstrom T, Lorenz J. On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ Math J, 2002, 51(6): 1339-1387 [13] Haspot B. Existence of global weak solution for compressible fluid models of Korteweg type. J Math Fluid Mech, 2011, 13: 223-249 [14] Haspot B. Global strong solution for the Korteweg system with quantum pressure in dimension N≥2. Math Ann, 2017, 367(1/2): 667-700 [15] Hattori H, Li D. Solutions for two dimensional system for materials of Korteweg type. SIAM J Math Anal, 1994, 25: 85-98 [16] Hattori H, Li D. Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198: 84-97 [17] Hattori H, Li D. The existence of global solutions to a fluid dynamic model for materials for Korteweg type. J Partial Diff Eqs, 1996, 9: 323-342 [18] Hoff D. The zero-Mach limit of compressible flows. Commun Math Phys, 1998, 192: 543-554 [19] Hou X F, Peng H Y, Zhu C J. Global classical solutions to the 3D Navier-Stokes-Korteweg equations with small initial energy. Anal Appl, 2018, 16(1): 55-84 [20] Hou X F, Peng H Y, Zhu C J. Global well-posedness of the 3D non-isothermal compressible fluid model of Korteweg type. Nonlinear Anal Real World Appl, 2018, 43: 18-53 [21] Jiang S, Ju Q C, Li F C. Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations. Nonlinearity, 2012, 25: 1351-1365 [22] Jiang S, Ju Q C, Li F C, Xin Z P. Low Mach number limit for the full magnetohydrodynamic equations with general initial data. Adv Math, 2014, 259: 384-420 [23] Ju Q C, Xu J J. Zero-Mach limit of the compressible Navier-Stokes-Korteweg equations. J Math Phys, 2022, 63(11): 111503 [24] Kato T. Strong Lp solutions of the Navier-Stokes equations in Rn, with applications to weak solutions. Math Zeit, 1984, 187: 471-480 [25] Klainerman S, Majda A. Singular limits of quasilinear hydrobolic systems with large parameters and the incompressible limit of compressible fluids. Commun Pure Appl Math, 1981, 34: 481-524 [26] Kobayashi T, Tsuda K. Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition. Asymtot Anal, 2021 121(2): 195-217 [27] Kotschote M. Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincaré Anal NonLinéaire, 2008, 25: 679-696 [28] Kotschote M. Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. Indiana Univ Math J, 2014, 63: 21-51 [29] Kreiss H O, Hagstrom T, Lorenz J, Zingano P. Decay in time of incompressible flows. J Math Fluid Mech, 2003, 5(3): 231-244 [30] Li Y P, Yong W A. Zero Mach number limit of the compressible Navier-Stokes-Korteweg equations. Commun Math Sci, 2016, 14(1): 233-247 [31] Lions P L.Mathematical Topics in Fluid Mechanics. Vol II: Compressible Models. New York: Oxford University Press, 1998 [32] Lions P L, Masmoudi N. Incompressible limit for a viscous compressible fluid. J Math Pures Appl, 1998, 77(9): 585-627 [33] Masmoudi N.Examples of singular limits in hydrodynamics// Dafermos C, Feireisl E. Handbook of Differential Equations, Vol III. Amsterdam: Elsevier/North-Holland, 2006 [34] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67-104 [35] Schonbek M E. Large time behavior of solutions to the Navier-Stokes equations in Hm spaces. Commun Partial Diff Eqs, 1995, 20(1/2): 103-117 [36] Sha K J, Li Y P. Low Mach number limit of the three-dimensional full compressible Navier-Stokes-Korteweg equations. Z Angew Math Phys, 2019, 70(6): Art 169 [37] Wiegner M. Decay results for weak solutions of the Navier-Stokes equations on Rn. J London Math Soc, 1987, s2-35(2): 303-313 [38] Yong W A.Basic aspects of hyperbolic relaxation systems// Freistuhler H, Szepessy A. Advances in the Theory of Shock Waves. Boston: Birkhäuser, 2001: 259-305 [39] Yu Y H, Yang X L, Wu X. Global smooth solutions of 3-D Navier-Stokes-Korteweg equations with large initial data. Math Methods Appl Sci, 2022, 45(10): 6165-6180 |