[1] Koh Y, Seo I. Strichartz and smoothing estimates in weighted L2 spaces and their applications. Indiana Univ Math J, 2021, 70(3): 949-983 [2] Strichartz R S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math J, 1977, 44(3): 705-714 [3] Wang B X, Huo Z H, Hao C C, Guo Z H.Harmonic Analysis Method for Nonlinear Evolution Equations, I. Hackensack, NJ: World Scientific Publishing, 2011 [4] Ginibre J, Velo G. Generalized Strichartz inequalities for the wave equation. J Funct Anal, 1995, 133(1): 50-68 [5] Pecher H. Nonlinear small data scattering for the wave and Klein-Gordon equation. Math Z, 1984, 185(2): 261-270 [6] Brenner P. On space-time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations. Math Z, 1984, 186(3): 383-391 [7] Brenner P. On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations. J Differential Equations, 1985, 56(3): 310-344 [8] Lin J L, Strauss W A. Decay and scattering of solutions of a nonlinear Schrödinger equation. J Funct Anal, 1978,30(2): 245-263 [9] Ginibre J, Velo G. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J Math Pures Appl (9), 1985, 64(4): 363-401 [10] Barceló J A, Bennett J M, Carbery A, et al. A note on weighted estimates for the Schrödinger operator. Rev Mat Complut, 2008, 21(2): 481-488 [11] Barceló J A, Bennett J M, Carbery A, et al. Strichartz inequalities with weights in Morrey-Campanato classes. Collect Math, 2010, 61(1): 49-56 [12] Kuba M, Tao T. Endpoint Strichartz estimates. Amer J Math, 1998, 120(5): 955-980 [13] Montgomery-Smith S J. Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. Duke Math J, 1998, 91(2): 393-408 [14] Triebel H. Interpolation Theory, Function Spaces, Differential Operators. Heidelberg: Johann Ambrosius Barth, 1995 [15] Grafakos L. Classical Fourier Analysis. New York: Springer, 2008 [16] Kurtz D S. Littlewood-Paley and multiplier theorems on weighted Lp spaces. Trans Amer Math Soc, 1980, 259(1): 235-254 [17] Littman W. Fourier transforms of surface-carried measures and differentiability of surface averages. Bull Amer Math Soc, 1963, 69: 766-770 |