[1] Buicǎ A, Llibre J. Limit cycles of a perturbed cubic polynomial differential center. Chaos Solitons and Fractals, 2007, 32:1059-1069 [2] Chang G, Han M. Bifurcation of limit cycles by perturbing a periodic annulus with multiple critical points. Internat J Bifur Chaos Appl Sci Engrg, 2013, 23:350143 [3] Coll B, Gasull A, Prohens R. Bifurcation of limit cycles from two families of centers. Dyn Contin Discrete Impuls Syst Ser A, Math Anal, 2005, 12:275-287 [4] Gasull A, Lázaro J T, Torregrosa J. Upper bounds for the number of zeroes for some Abelian integrals. Nonlinear Anal, 2012, 75:5169-5179 [5] Gasull A, Li C, Torregrosa J. Limit cycles appearing from the perturbation of a system with a multiple line of critical points. Nonlinear Anal, 2012, 75:278-285 [6] Gasull A, Prohens R, Torregrosa J. Bifurcation of limit cycles from a polynomial non-global center. J Dynam Differential Equations, 2008, 20:945-960 [7] Han M. Bifurcation Theory of Limit Cycles. Beijing:Science Press, 2013 [8] Han M, Xiong Y. Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters. Chaos Solitons and Fractals, 2014, 68:20-29 [9] Llibre J, Pérez del Río J S, Rodríguez J A. Averaging analysis of a perturbed quadratic center. Nonlinear Anal, 2001, 46:45-51 [10] Sui S, Zhao L. Bifurcation of limit cycles from the center of a family of cubic polynomial vector fields. Internat J Bifur Chaos Appl Sci Engrg, 2018, 28(5):1850063 [11] Xiang G, Han M. Global bifurcation of limit cycles in a family of polynomial systems. J Math Anal Appl, 2004, 295:633-644 [12] Xiang G, Han M. Global bifurcation of limit cycles in a family of multiparameter systems. Internat J Bifur Chaos Appl Sci Engrg, 2004, 14:3325-3335 [13] Xiong Y. The number of limit cycles in perturbations of polynomial systems with multiple circles of critical points. J Math Anal Appl, 2016, 440:220-239 [14] Yang P, Yu J. The number of limit cycles from a cubic center by the Melnikov function of any order. J Differential Equations, 2020, 268(4):1463-1494 |