LONG-TIME ASYMPTOTIC OF STABLE DAWSON-WATANABE PROCESSES IN SUPERCRITICAL REGIMES
Khoa LÊ1,2
1. Department of Mathematical and Statistical Sciences, University of Alberta, 632 Central Academic, Edmonton, AB T6G 2R3, Canada; 2. Department of Mathematics, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
[1] Adamczak R, Miłoś P. CLT for Ornstein-Uhlenbeck branching particle system. Electron J Probab, 2015, 20:Art 42, 1-35 [2] Asmussen S R, Hering H. Strong limit theorems for general supercritical branching processes with applications to branching diffusions. Z Wahrscheinlichkeitstheorie und Verw Gebiete, 1976, 36(3):195-212 [3] Kouritzin M A, Le K. Long-time limits and occupation times for stable Fleming-Viot processes with decaying sampling rates. arXiv:1705.10685(2017) [4] Kouritzin M A, Le K, Sezer D. Laws of large numbers for supercritical branching Gaussian processes. Stochastic Process Appl, 2018. DOI:10.1016/j.spa.1018.09.011 [5] Kouritzin M A, Ren Y-X. A strong law of large numbers for super-stable processes. Stochastic Process Appl, 2014, 124(1):505-521 [6] Perkins E. Dawson-Watanabe superprocesses and measure-valued diffusions. Lectures on probability theory and statistics (Saint-Flour, 1999), 2002:125-324 [7] Walsh J B. An Introduction to Stochastic Partial Differential Equations. New York:Springer-Verlag, 1986:265-439