[1] Das A. Integrable Models.Teaneck, NJ: World Scientific, 1989 [2] Tu G Z.On Liouville integrability of zero-curvature equations and the Yang hierarchy. J Phys A: Math Gen, 1989, 22(13): 2375-2392 [3] Ma W X.A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin Ann Math Ser A, 1992, 13(1): 115-123 [4] Magri F.A simple model of the integrable Hamiltonian equation. J Math Phys, 1978, 19(5): 1156-1162 [5] Ablowitz M J, Kaup D J, Newell A C, Segur H.The inverse scattering transform-Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53(4): 249-315 [6] Wu Y T, Geng X G, Hu, X B, Zhu S M. A generalized Hirota-Satsuma coupled Korteweg-de Vries equation and Miura transformations. Phys Lett A, 1999, 255: 259-264 [7] Xia T C, Yu F J, Zhang Y.The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions. Phys A, 2004, 343: 238-246 [8] Manukure S.Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints. Commun Nonlinear Sci Numer Simul, 2018, 57: 125-135 [9] Liu T S, Xia T C.Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann- Hilbert problem. Nonlinear Anal Real World Appl, 2022, 68: 103667 [10] Wang H F, Zhang Y F.Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations. J Comput Appl Math, 2023, 420: 114812 [11] Ma W X.A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order. Phys Lett A, 2007, 367(6): 473-477 [12] Yao Y Q, Shen S F, Ma W X.A soliton hierarchy associated with a spectral problem of 2nd degree in a spectral parameter and its bi-Hamiltonian structure. Adv Math Phys, 2016, 2016: 3589704 [13] Wang Z B, Wang H F.Integrable couplings of two expanded non-isospectral soliton hierarchies and their bi-Hamiltonian structures. Int J Geom Methods Mod Phys, 2022, 19(10): 2250160 [14] MaWX. A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem. Commun Theor Phys, 2024, 76(7): 075001 [15] Yang J Y, Ma W X.Four-component Liouville integrable models and their bi-Hamiltonian formulations. Rom J Phys, 2024, 69(1/2): 101 [16] Ma W X.A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations. Appl Math Lett, 2024, 153: 109025 [17] Ma W X.A generalized hierarchy of combined integrable bi-Hamiltonian equations from a specific fourthorder matrix spectral problem. Mathematics, 2024, 12(6): 927 [18] Kaup D J, Newell A C.An exact solution for a derivative nonlinear Schrödinger equation. J Math Phys, 1978, 19(4): 798-801 [19] Wadati M, Konno K, Ichikawa Y H.New integrable nonlinear evolution equations. J Phys Soc Jpn, 1979, 47(5): 1698-1700 [20] Takhtajan L A.Integration of the continuous Heisenberg spin chain through the inverses scattering method. Phys Lett A, 1977, 64(2): 235-237 [21] Ma W X.Reduced non-local integrable NLS hierarchies by pairs of local and non-local constraints. Int J Appl Comput Math, 2022, 8(4): 206 [22] Ma W X.Sasa-Satsuma type matrix integrable hierarchies and their Riemann-Hilbert problems and soliton solutions. Phys D, 2023, 446: 133672 [23] MaWX. The algebraic structure of zero curvature representations and application to coupled KdV systems. J Phys A: Math Gen, 1993, 26(11): 2573-2582 [24] Fuchssteiner B, Fokas A S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys D, 1981/82, 4(1): 47-66 [25] Zhang Y, Dong H H.Multi-component Gerdjikov-Ivanov system and its Riemann-Hilbert problem under zero boundary conditions. Nonlinear Anal Real World Appl, 2021, 60: 103279 [26] Ye R S, Zhang Y.Two-component complex modified Korteweg-de Vries equations: New soliton solutions from novel binary Darboux transformation. Theor Math Phys, 2023, 214(2): 183-193 [27] Novikov S P, Manakov S V, Pitaevskii L P, Zakharov V E.Theory of Solitons: the Inverse Scattering Method. New York: Consultants Bureau, 1984 [28] Matveev V B, Salle M A.Darboux Transformations and Solitons. Berlin: Springer-Verlag, 1991 [29] Geng X G, Li R M, Xue B.A vector general nonlinear Schrödinger equation with ($m + n$) components. J Nonlinear Sci, 2020, 30(3): 991-1013 [30] Aktosun T, Busse T, Demontis F, van der Mee C. Symmetries for exact solutions to the nonlinear Schrödinger equation. J Phys A: Math Theoret, 2010, 43(2): 025202 [31] Cheng L, Zhang Y, Lin M J.Lax pair and lump solutions for the (2+1)-dimensional DJKM equation associated with bilinear Bäcklund transformations. Anal Math Phys, 2019, 9(4): 1741-1752 [32] Sulaiman T A, Yusuf A, Abdeljabbar A, Alquran M.Dynamics of lump collision phenomena to the (3+1)- dimensional nonlinear evolution equation. J Geom Phys, 2021, 169: 104347 [33] Manukure S, Chowdhury A, Zhou Y.Complexiton solutions to the asymmetric Nizhnik-Novikov-Veselov equation. Int J Mod Phys B, 2019, 33(11): 1950098 [34] Zhou Y, Manukure S, McAnally M. Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation. J Geom Phys, 2021, 167: 104275 [35] Ma W X.Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math Methods Appl Sci, 2019, 42(4): 1099-1113 [36] Ma W X.Reduced nonlocal integrable mKdV equations of type (-$\lambda$, $\lambda$) and their exact soliton solutions. Commun Theoret Phys, 2022, 74(6): 065002 [37] Ma W X.Type ($\lambda^*,\lambda$) reduced nonlocal integrable AKNS equations and their soliton solutions. Appl Numer Math, 2024, 199: 105-113 [38] Ma W X, Huang Y H, Wang F D, et al.Binary Darboux transformation of vector nonlocal reverse-space nonlinear Schrödinger equations. Int J Geom Methods Mod Phys, 2024, 21: 2450182 |