[1] Adams R C, Fournier J F. Sobolev Spaces. Amsterdam: Elsevier/Academic Press, 2003 [2] Bauer W, Isralowitz J. Compactness characterization of operators in the Toeplitz algebra of the Fock space. J Funct Anal, 2012, 263: 1323-1355 [3] Chang S Y A, Wang L, Yang P C. A regularity theory of biharmonic maps. Commun Pure Appl Math, 1999, 52: 1113-1137 [4] Coifman R, Lions P L, Meyer Y, Semmes S. Compensated compactness and Hardy spaces. J Math Pures Appl, 1993, 72: 247-286 [5] de Longueville F L, Gastel A. Conservation laws for even order systems of polyharmonic map type. Calc Var Partial Differential Equations, 2021, 60: Art 138 [6] Garrido-Atienza M J, Marín-Rubio P. Navier Stokes equations with delays on unbounded domains. Nonlinear Anal, 2006, 64: 1100-1118 [7] Gastel A, Scheven C. Regularity of polyharmonic maps in the critical dimension. Comm Anal Geom, 2009, 17: 185-226 [8] Guo C Y, Wang C, Xiang C L. $L^p$-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions. Calc Var Partial Differential Equations, 2023, 62: Art 31 [9] Guo C Y, Xiang C L. Regularity of solutions for a fourth order linear system via conservation law. J Lond Math Soc, 2020, 101: 907-922 [10] Guo C Y, Xiang C L. Regularity of weak solutions to higher order elliptic systems in critical dimensions. Tran Amer Math Soc, 2021, 374: 3579-3602 [11] Guo C Y, Xiang C L. Conservation law for harmonic mappings in supercritical dimensions. Comptes Rendus Mathématique, 2024, 362(G7): 769-773 [12] Guo C Y, Xiang C L, Zheng G F. The Lamm-Riviere system I: $L^p$ regularity theory. Calc Var Partial Differential Equations, 2021, 60: Art 213 [13] Guo C Y, Xiang C L, Zheng G F. $L^p$ regularity theory for even order elliptic systems with antisymmetric first order potentials. J Math Pure Appl, 2022, 165: 286-324 [14] Goldstein P, Strzelecki P, Zatorska-Goldstein A. On polyharmonic maps into spheres in the critical dimension. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 1387-1405 [15] Hélein F. Harmonic Maps, Conservation Laws and Moving Frames. Cambridge: Cambridge University Press, 2002 [16] Hörter J, Lamm T. Conservation laws for even order elliptic systems in the critical dimensions-a new approach. Calc Var Partial Differential Equations, 2021, 60: Art 125 [17] Lamm T, Rivière T. Conservation laws for fourth order systems in four dimensions. Comm Partial Differential Equations, 2008, 33: 245-262 [18] Lamm T, Wang C. Boundary regularity for polyharmonic maps in the critical dimension. Adv Calc Var, 2009, 2: 1-16 [19] Málek J, Nečas J, Rokyta M, Ruička M. Weak and Measure-valued Solutions to Evolutionary PDE. New York: Champman-Hall, 1996 [20] Rivière T. Everywhere discontinuous harmonic maps into spheres. Acta Math, 1995, 175: 197-226 [21] Rivière T. Conservation laws for conformally invariant variational problems. Invent Math, 2007, 168: 1-22 [22] Rivière T. Analysis aspects of Willmore surfaces. Invent Math, 2008, 174: 1-45 [23] Rivière T. The role of integrability by compensation in conformal geometric analysis. Analytic aspects of problems in Riemannian geometry: elliptic PDEs, solitons and computer imaging. Soc Math France, Paris, Sémin Congr, 2011, 22: 93-127 [24] Rivière T. Conformally invariant variational problems. Lecture notes at ETH Zurich, available at https://people.math.ethz.ch/riviere/lecture-notes, 2012 [25] Rivière T, Struwe M. Partial regularity for harmonic maps and related problems. Comm Pure Appl Math, 2008, 61: 451-463 [26] Schwarz G. Hodge Decomposition--a Method for Solving Boundary Value Problems. Berlin: Springer-Verlag, 1995 [27] Sharp B, Topping P. Decay estimates for Rivière's equation, with applications to regularity and compactness. Trans Amer Math Soc, 2013, 365: 2317-2339 [28] Shatah J. Weak solutions and development of singularities of the SU(2) $\sigma$-model. Commun Pure Appl Math, 1988, 41: 459-469 [29] Struwe M. Partial regularity for biharmonic maps, revisited. Calc Var Partial Differential Equations, 2008, 33: 249-262 [30] Uhlenbeck K. Connections with $L^p$ bounds on curvature. Comm Math Phys, 1982, 83: 31-42 [31] Wang C Y. Biharmonic maps from $R^4$ into a Riemannian manifold. Math Z, 2004, 247: 65-87 [32] Wang C Y. Stationary biharmonic maps from $R^m$ into a Riemannian manifold. Comm Pure Appl Math, 2004, 57: 419-444 [33] Wente H C. An existence theorem for surfaces of constant mean curvature. J Math Anal Appl, 1969, 26: 318-344 [34] Xiang C L, Zheng G F. Sharpe Meorry regularity theory for a fourth order geometrical equation. Acta Math Sci, 2024, 44B(2): 420-430 [35] Ziemer W P. Weakly Differentiable Functions. New York: Springer-Verlag, 1989 |