[1] Adimurthi, Jaffr$\acute{e}$ J, Gowda G. Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J Numer Anal, 2004, 42(1): 179-208 [2] Adimurthi, Siddhartha M, Gowda G. Optimal entropy solutions for conservation laws with discontinuous flux-functions. J Hyperbolic Differ Equ, 2005, 2(4): 783-837 [3] Aekta A, Manas S, Abhrojyoti S, Ganesh V. Solutions with concentration for conservation laws with discontinuous flux and its applications to numerical schemes for hyperbolic systems. Stud Appl Math, 2020, 145(2): 247-290 [4] Andreianov B. New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM: Proceedings and Surveys, 2015, 50: 40-65 [5] Andreianov B, Karlsen K, Risebro N. A theory of $L^{1}$-dissipative solvers for scalar conservation laws with discontinuous flux. Arch Rational Mech Anal, 2011, 201(1): 27-86 [6] Berthelin F, Vovelle J. A Bhatnagar-Gross-Krook approximation to scalar conservation laws with discontinuous flux. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2010, 140(5): 953-972 [7] Darko M. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30(4): 1191-1210 [8] Ding M, Li Y. An overview of piston problems in fluid dynamics//Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proc Math Stat. Heidelberg: Springer, 2014: 161-191 [9] Fazio R, LeVeque R. Moving mesh methods for one-dimensional hyperbolic problems using CLAWPACK. Comp Math Appl, 2003, 45(1): 273-298 [10] Gao L, Qu A, Yuan H. Delta shock as free piston in pressureless Euler flows. Z Angew Math Phys, 2022, 73(3): Art 114 [11] Gimse T, Risebro N. Solution of Cauchy problem for a conservation law with discontinuous flux function. SIAM J Math Anal, 1992, 23(3): 635-648 [12] Guerra G, Shen W. The Cauchy problem for a non strictly hyperbolic $3\times3$ system of conservation laws arising in polymer flooding. Commun Math Sci, 2021, 19(6): 1491-1507 [13] Guerra G, Shen W. Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous fux. SIAM J Math Anal, 2019, 51(4): 3112-3144 [14] Jin Y, Qu A, Yuan H. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Commun Pure Appl Anal, 2021, 20(7): 2665-2685 [15] Jin Y, Qu A, Yuan H. Radon measure solutions to Riemann problems for isentropic compressible Euler equations of polytropic gases. Commun Appl Math Comput, 2023, 7(3): 1097-1129 [16] LeFloch P, Thanh M. The Riemann problem for the shallow water equations with discontinuous topography. Commun Math Sci, 2007, 5(4): 865-885 [17] LeVeque R. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press, 2002 [18] Li J, Sheng W, Zhang T, Zheng Y. Two-dimensional Riemann problems: from scalar conservation laws to compressible Euler equations. Acta Mathematica Scientia, 2009, 29B(4): 777-802 [19] Li T, Yu W.Boundary Value Problems for Quasilinear Hyperbolic Systems. Durham: Duke University Math Series V, 1985 [20] Liu T. The free piston problem for gas dynamics. J Differ Equ, 1978, 30(2): 175-191 [21] Liu T, Smoller J. On the vacuum state for the isentropic gas dynamics equations. Adv Appl Math, 1980, 1(4): 345-359 [22] Nedeljkov M. Shadow waves: entropies and interactions for delta and singular shocks. Arch Rational Mech Anal, 2010, 197(2): 489-537 [23] Qu A, Yuan H. Measure solutions of one-dimensional piston problem for compressible Euler equations of Chaplygin gas. J Math Anal Appl, 2019, 481(1): 123486 [24] Qu A, Yuan H. Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton's sine-squared law. J Differ Equ, 2020, 269(1): 495-522 [25] Qu A, Yuan H, Zhao Q. Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge. Z Angew Math Mech, 2020, 100(3): e201800225 [26] Qu A, Yuan H, Zhao Q. High Mach number limit of one-dimensional piston problem for non-isentropic compressible Euler equations: polytropic gas. J Math Phys, 2020, 61(1): 011507 [27] Shen W. On the Cauchy problems for polymer flooding with gravitation. J Differ Equ, 2016, 261(1): 627-653 [28] Takeno S. Free piston problem for isentropic gas dynamics. Japan J Indust Appl Math, 1995, 12(2): 163-194 [29] Towers J. Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J Numer Anal, 2000, 38(2): 681-698 |