[1] Calabi E.Extremal Kähler metrics//Yau S T. Seminars on Differential Geometry. Princeton: Princeton University Press, 1982: 259-290 [2] Calabi E. Extremal Kähler metrics II//Chavel I, Farkas H M. Differential Geometry and Complex Analysis. Berlin: Springer-Verlag, 1985: 95-114 [3] Chen B, Zhu X. Yau's uniformization conjecture for manifolds with non-maximal volume growth. Acta Mathematica Scientia, 2018, 38B}: 1468-1484 [4] Demailly J, Peternell T, Schneider M. Compact complex manifolds with numerically effective tangent bundles. J Alg Geom, 1994, 3: 295-345 [5] Duan X M.Complete Kähler Metrics with Positive Holomorphic Sectional Curvatures on Certain Line Bundles [D]. Kaifeng: Henan University, 2022 [6] Guan Z.On Certain Complex Manifolds [D]. Berkeley: University of California, 1993 [7] Guan Z. Existence of extremal metrices on compact almost homogeneous manifolds with two ends. Tran Amer Math Soc, 1995, 347: 2255-2262 [8] Guan Z. Quasi-einstein metrics. International J Math, 1995, 6(3): 371-379 [9] Guan D. On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles. Math Res Letters, 1999, 6: 547-555 [10] Guan D. Existence of extremal metrics on almost homogeneous manifolds of cohomogeneity one--III. Intern J Math, 2003, 14: 259-287 [11] Guan D. Maxwell-Einstein metrics on certain completion of some ${\bf C}^*$ bundles. Acta Mathematica Scientia, 2023, 43B: 363-372 [12] Guan D, Liang M. Complete Kähler metrics with positive holomorphic sectional curvatures on certain line bundles (retated to a cohomogeneity one point of view on a Yau Conjecture) II. preprint2022 and submitted [13] Greene R, Wu H. Some function-theoretic properties of noncompact Kähler manifolds//Chern S S, Osserman R. Differential Geometry. Providence, RI: Amer Math Soc, 1975: 33-41 [14] Greene R, Wu H. $C^\infty$ convex functions and manifolds of positive curvature. Acta Math, 1976, 137: 209-245 [15] Greene R, Wu H. Analysis on Non-compact Kähler Manifolds//Wells R. Complex Variables. Providence, RI: Amer Math Soc, 1977: 69-102 [16] Greene R, Wu H. On Kähler manifolds of positive bi-sectional curvature and a theorem of Hartogs. Abh Math Sem Univ Hamburg, 1978, 47: 171-185 [17] Klembeck P F. A complete Kähler metric of positive curvature on $C^n$. Proc Amer Math Soc, 1977, 64(2): 313-316 [18] Liu G. On Yau's uniformization conjecture. Cambridge Journal of Mathematics, 2019, 7: 33-70 [19] Kobayashi S.Differential Geometry of Complex Vector Bundles. Princeton: Princeton University Press, 1987 [20] Mok N. The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J Diff Geom, 1988, 27: 179-214 [21] Mok N. An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties. Bull Soc Math France, 1984, 112: 197-258 [22] Mori S. Projective manifolds with ample tangent bundles. Ann Math, 1979, 110: 593-606 [23] Mok N, Siu Y T, Yau S T. The Poincaré-Lelong equation on complete Kähler manifolds. Compositio Math, 1981, 44: 183-218 [24] Mok N, Zhong J Q. Curvature characterization of compact Hermitian symmetric spaces. J Diff Geom, 1986, 23(1): 15-67 [25] Siu Y T. Pseudoconvexity and the problem of levi. Bull Amer Math Soc, 1978, 84: 481-512 [26] Siu Y T, Yau S T. Compact Kähler manifolds of positive bisectional curvature. Invent Math, 1980, 59: 189-204 [27] Wu H. An elementary method in the study of nonnegative curvature. Acta Math, 1979, 142: 57-78 [28] Wu H. Function theory on noncompact Kähler manifolds//Kobayashi S, Horst C, Wu H. Complex Differential Geometry, DMV Sem, 3. Basel: Birkhäuser, 1983: 67-155 [29] Wu H, Zheng F.Examples of positively curved complete Kähler manifolds//Geometry and Analysis no.1. Adv Lec Math 17. Somerville, MA: Int Press, 2011: 517-542 [30] Yau S T. Problem Section, Seminar on Differential Geometry. Annals of Math Studies, Vol 102. Princeton: Princeton University Press and University of Tokyo Press, 1982 [31] Yau S T.A review of complex differential geometry//Proc Symp Pure Math, Vol 52, Part II. Amer Math Soc, 1991 [32] Yang B, Zheng F. Hirzebruch manifolds and positive holomorphic sectional curvature. Ann Inst Fourier (Grenoble), 2019, 69(6): 2589-2634 [33] Yang B, Zheng F. Examples of completed Kähler metrics with nonnegative holomorphic sectional curvature. J Geom Anal, 2023, 23: Art 47 |