[1] Berestycki H, Lions P L. Nonlinear scalar field equations. I Existence of a ground state. Arch Rational Mech Anal, 1983, 82(4): 313-345 [2] Benguria R, Brezis H, Lieb E H. The Thomas-Fermi-von Weizsacker theory of atoms and molecules. Commun Math Phys, 1981, 79: 167-180 [3] Benguria R, Jeanneret L. Existence and uniqueness of positive solutions of semilinear elliptic equations with Coulomb potentials on R3. Commun Math Phys, 1986, 104: 291-306 [4] J. Bourgain, Global well-posedness of defocusing 3D critical NLS in the radial case. J Amer Math Soc, 1999, 12: 145-171 [5] Cazenave T. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, Vol 10. New York: New York University Courant Institute of Mathematical Sciences, 2003 [6] Chadam J M, Glassey R T. Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J Math Phys, 1975, 16: 1122-1130 [7] Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. Global existence and scattering for rough solutions of a nonlinear Schrödinger equations on R3. Comm Pure Appl Math, 2004, 57: 987-1014 [8] Colliander J, Keel M, Staffilani G, Takaoka H, Tao T. Global well-posedness and scattering for the energycirtical nonlinear Schrödinger equation in R3. Annals of Math, 2008, 167: 767-865 [9] Christ M, Weinstein M. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J Funct Anal, 1991, 100: 87-109 [10] Dias J, Figueira M. Conservation laws and time decay for the solutions of some nonlinear SchrödingerHartree equations and systems. J Math Anal Appl, 1981, 84: 486-508 [11] Dodson B. Global well-posedness and scattering for the focusing, energy-critical nonlinear Schrödinger problem in dimension d = 4 for initial data below a ground state threshold. Ann Scient Éc Norm Sup, 2019, 52: 139-180 [12] Dodson B, Murphy J. A new proof of scattering belw the ground state for the 3D radial focusing NLS. Proc Amer Math Soc, 2017, 145(11): 4859-4867 [13] Dodson B, Murphy J. A new proof of scattering below the ground state for the non-radial focusing NLS. Math Res Lett, 2018, 25(6): 1805-1825 [14] Duyckaerts T, Holmer J, Roudenko S. Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math Res Lett, 2008, 15(6): 1233-1250 [15] Gidas B, Ni W M, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68: 209-243 [16] Ginibre J, Velo G. On the class of nonlinear Schrödinger equation I & II. J Funct Anal, 1979, 32: 1-72 [17] Ginibre J, Velo G. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J Math Pure Appl, 1985, 64: 363-401 [18] Hayashi N, Ozawa T. Time decay of solutions to the Cauchy problem for time-dependent SchrödingerHartree equations. Commun Math Phys, 1987, 110: 467-478 [19] Holmer J, Roudenko S. A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Comm Math Phys, 2008, 282(2): 435-467 [20] Hong Y. Scattering for a nonlinear Schrödinger equation with a potential. Commun Pure Appl Anal, 2016, 15(5): 1571-1601 [21] Isozaki H, Kitada H. Modified wave operators with time independent modifiers. J Fac Sci Univ Tokyo, 1985, 32: 77-104 [22] Keel M, Tao T. Endpoint Strichartz estimates. Amer J Math, 1998, 120: 955-980 [23] Kenig C, Merle F. Global well-posedness, scattering, and blow-up for the energy-critical focusing nonlinear Schrödinger equation in the radial case. Invent Math, 2006, 166(3): 645-675 [24] Killip R, Miao C, Visan M, Zhang J, Zheng J. Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math Z, 2018, 288(3/4): 1273-1298 [25] Killip R, Murphy J, Visan M, Zheng J. The focusing cubic NLS with inverse square potential in three space dimensions. Diff Inte Equ, 2017, 30: 161-206 [26] Killip R, Visan M. The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Amer J Math, 2010, 132: 361-424 [27] Kurata K. An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials. J Lond Math Soc, 2000, 62: 885-903 [28] Kwong M. Uniqueness of positive solutions of ?u-u+up=0 in Rn. Arch Rational Mech Anal, 1989, 105(3): 243-266 [29] Lenzmann E, Lewin M. Dynamical ionization bounds for atoms. Analysis and PDE, 2013, 6: 1183-1211 [30] Lieb E H. Thomas-Fermi and related theories of atoms and molecules. Rev Mod Phys, 1981, 53: 603-641 [31] Lu J, Miao C, Murphy J. Scattering in H1 for the intercritical NLS with an inverse-square potential. J Differential Equations, 2018, 264: 3174-3211 [32] Messiah A. Quantum Mechanics. Amsterdam: North Holland, 1961 [33] Mizutani H. Strichartz estimates for Schrödinger equations with slowly decaying potentials. J Funct Anal, 2022, 279(12): 1087891808.06987v1. [34] O’Neil R. Convolution operators and L(p, q) spaces. Duke Math J, 1963, 30: 129-142 [35] Planchon F. On the Cauchy problem in Besov spaces for a non-linear Schrödinger equation. Communications in Contemporary Mathematics, 2000, 2(2): 243-254 [36] Reed M, Simon B. Methods of Mathematical Physics. Vols 1, 2. New York: Academic, 1975; Vols 3, 4. 1978 [37] Ryckman E, Visan M. Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R1+4. Amer J Math, 2007, 129: 1-60 [38] Series G. Spectrum of Atomic Hydrogen. Oxford: Oxford University Press, 1957 [39] Sikora A, Wright J. Imaginary powers of Laplace operators. Proc Amer Math Soc, 2001, 129: 1745-1754 [40] Shen Z. Lp estimates for Schrödinger operators with certain potentials. Ann Inst Fourier (Greno-ble), 1995, 45: 513-546 [41] Tao T. Nonlinear Dispersive Equations, Local and Global Analysis. CBMS Reg Conf Ser Math, Vol 106. Providence, RI: Amer Math Soc, 2006; Washington, DC: published for the Conference Board of the Mathematical Science [42] Taylor M. Partial Differential Equations, Vol II. Springer, 1996 [43] Visan M. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math J, 2007, 138: 281-374 [44] Zhang, Zheng J. Scattering theory for nonlinear Schrödinger with inverse-square potential. J Funct Anal, 2014, 267: 2907-2932 [45] Zhang X. On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations. J Differential Equations, 2006, 230: 422-445 |