[1] Brieskorn E, van de Ven A. Some complex structures on products of homotopy spheres. Topology, 1968, 7: 389-393 [2] Cecil T E, Chi Q S, Jensen G R. Isoparametric hypersurfaces with four principal curvatures. Ann Math, 2007, 166(1): 1-76 [3] Calabi E, Eckmann B. A class of compact, complex manifolds which are not algebraic. Ann Math, 1953, 58: 494-500 [4] Chern S S. Complex Manifolds without Potential Theory. 2nd ed. New York, Heidelberg: Springer-Verlag, 1979 [5] Chi Q S. Isoparametric hypersurfaces with four principal curvatures, III. J Differential Geom, 2013, 94: 469-504 [6] Chi Q S. Isoparametric hypersurfaces with four principal curvatures, IV. J Differential Geom, 2020, 115: 225-301 [7] Ferus D, Karcher H, Münzner H F. Cliffordalgebren und neue isoparametrische Hyperflächen. Math Z, 1981, 177: 479-502 [8] Immervoll S. On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres. Ann Math, 2008, 168: 1011-1024 [9] Miyaoka R. Geometry of G2 orbits and isoparametric hypersurfaces. Nagoya Math J, 2011, 203: 175-189 [10] Miyaoka R. Isoparametric hypersurfaces with (g, m) = (6, 2). Ann Math, 2013, 177: 53-110; Ann Math, 2016, 183: 1057-1071 [11] Peng C K, Tang Z Z. Integrability condition on an almost complex structure and its application. Acta Math Sin (Engl Ser), 2005, 21: 1459-1464 [12] Qian C, Tang Z Z, Yan W J. Topology and curvature of isoparametric families in spheres. Comm Math Statis, DOI:10.1007/s40304-021-00259-2 [13] Tang Z Z. Curvature and integrability of an almost Hermitian structure. Int J Math, 2006, 17: 97-105 [14] Ueno K. Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in Mathematics, Vol 439. Berlin, New York: Springer-Verlag, 1975 [15] Wang Q M. On the topology of Clifford isoparametric hypersurfaces. J Differential Geom, 1988, 27: 55-66 |