[1] Adler M, Van Moerbeke P, Vanhaecke P. Algebraic integrability, Painlev′e geometry and Lie algebras.
Springer-Verlag, 2004
[2] Aldous D J. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review
of the mean-field theory for probabilists. Bernoulli, 1999, 5: 3–48
[3] Anderson G, Guionnet A, Zeitouni O. An Introduction to Random Matrices. Cambridge University Press,
2010
[4] Bertoin J. The inviscid Burgers equation with Brownian initial velocity. Comm Math Phys, 1998, 193:
397–406
[5] Bertoin J. Some aspects of additive coalescents//Proceedings of the International Congress of Mathemati-
cians, Beijing 2002, vol III. Beijing Higher Edu Press, 2002: 15–23
[6] Burgers J M. The Nonlinear Di?usion Equation. Dordrecht: Reidel, 1974
[7] Carraro L, Duchon J. Solutions statistiques intrins`eques de l’′equation de Burgers et processus de L′evy. C R Acad Sci Paris S′er I Math, 1994, 319: 855–858
[8] Chabanol M -L, Duchon J. Markovian solutions of inviscid Burgers equation. J Statist Phys, 2004, 114:
525–534
[9] Deift P. Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert approach, vol 3. New York
Univ Courant Inst, 1999
[10] Donoghue W. Monotone Matrix Functions and Analytic Continuation. Berlin, New York: Springer, 1974
[11] Dyson F J. A Brownian-motion model for the eigenvalues of a random matrix. Rev Modern Phys, 1962,
3: 1191–1198
[12] E W, Sina?? Y G. New results in mathematical and statistical hydrodynamics. Uspekhi Mat Nauk, 2000,
55: 25–58
[13] Feynman R, Leighton R, Sands M, et al. The Feynman Lectures on Physics, vol 1. Reading, MA: Addison-
Wesley, 1964
[14] Frachebourg L, Martin P A. Exact statistical properties of the Burgers equation. J Fluid Mech, 2000,
417: 323–349
[15] Groeneboom P. Brownian motion with a parabolic driftand Airy functions. Probab Theory Related Fields,
1989, 81: 79–109
[16] Guionnet A. Large random matrices: Lectures on macroscopic asymptotics//Ecole d’Et′e Probabilit′es de Saint-Flour XXXVI-2006, vol 1957 of Lecture Notes in Math. Berlin: Springer, 2009: 1–310
[17] Hopf E. The partial di?erential equation ut +uux = μxx. Comm Pure Appl Math, 1950, 3: 201–230
[18] Jimbo M, Miwa T, M^ori Y, Sato M. Density matrix of an impenetrable Bose gas and the fifth Painleve
transcendent. Physica D, 1980, 1: 80–158
[19] Kerov S V. Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis.
Providence RI: American Mathematical Society, 2003
[20] Lax P. Functional Analysis. John Wiley and Sons, 2002
[21] McKean Jr H P. Stochastic Integrals. New York: Academic Press, 1969
[22] Mehta M. Random Matrices, vol 142. Academic Press, 2004
[23] Menon G. Complete integrability of shock clustering and burgers turbulence. Arch Ration Mech Anal,
2011, doi 10.1007/S00205-011-0461-8
[24] Menon G, Pego R L. Universality classes in Burgers turbulence. Comm Math Phys, 2007, 273: 177–202
[25] Menon G, Srinivasan R. Kinetic theory and Lax equations for shock clustering and Burgers turbulence. J
Stat Phys, 2010, 140: 1195–1223
[26] Morawetz C, Serrin J, Sina?? Y. Selected Works of Eberhard Hopf: With Commentaries. American Math-
ematical Society, 2002
[27] Tracy C A, Widom H. Distribution functions for largest eigenvalues and their applications//Proceedings
of the International Congress of Mathematicians, Vol I (Beijing, 2002). Beijing: Higher Edu Press, 2002:
587–596
[28] Voiculescu D. Addition of certain noncommuting random variables. J Funct Anal, 1986, 66: 323–346
[29] Taub A H, ed. John von Neumann. Collected Works. Vol VI: Theory of Games, Astrophysics, Hydrody-
namics and Meteorology. New York: Pergamon Press, Macmillan Co, 1963 |