[1] Akramov I, Oliver M. On the existence of solutions to Bi-planar Monge-Ampére equation. Acta Math Sci, 2020, 40B(2): 379–388 [2] Bedford E, Taylor B A. The Dirichlet problem for a complex Monge-Ampère equation. Invent Math, 1976, 37(1): 1–44 [3] Bedford E, Taylor B A. Variational properties of the complex Monge-Ampère equation. I. Dirichlet principle. Duke Math J, 1978, 45(2): 375–403 [4] Błocki Z. On geodesics in the space of Kähler metrics. Preprint available on the website of the author 2009 [5] Caffarelli L, Kohn J J, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equations II. Complex Monge-Ampère, and uniformly elliptic equations. Comm Pure Appl Math, 1985, 38(2): 209–252 [6] Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian. Acta Math, 1985, 155(3/4): 261–301 [7] Chen X. The space of Kähler metrics. J Differential Geom, 2000, 56(2): 189–234 [8] Chu J, Tosatti V, Weinkove B. The Monge-Ampère equation for non-integrable almost complex structures. J Eur Math Soc, 2019, 21(7): 1949–1984 [9] Ehresmann C, Libermann P. Sur les structures presque hermitiennes isotropes. C R Acad Sci Paris, 1951, 232: 1281–1283 [10] Feng K, Shi Y, Xu Y. On the Dirichlet problem for a class of singular complex Monge-Ampère equations. Acta Math Sin Engl Ser, 2018, 34(2): 209–220 [11] Székelyhidi G. Fully nonlinear elliptic equations on compact Hermitian manifolds. J Differential Geom, 2018, 109(2): 337–378 [12] Gauduchon P. Hermitian connections and Dirac operators. Boll Un Mat Ital, 1997, 11B(suppl): 257–288 [13] Guan B. The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function. Comm Anal Geom, 1998, 6(4): 687–703 [14] Guan B. The Dirichlet problem for complex Monge-Ampère equations and applications//Trends in Partial Differential Equations. Adv Lect Math, 10. Somerville, MA: Int Press, 2010: 53–97 [15] Guan B. Second-order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math J, 2014, 163(8): 1491–1524 [16] Guan P. The extremal function associated to intrinsic norms. Ann of Math, 2002, 156(1): 197–211 [17] Harvey F R, Lawson B. Potential theory on almost complex manifolds. Ann Inst Fourier (Grenoble), 2015, 65(1): 171–210 [18] He W. On the regularity of the complex Monge-Ampère equations. Proc Amer Math Soc, 2012, 140(5): 1719–1727 [19] Hwang S. Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Am Math Mon, 2004, 111(2): 157–159 [20] Jiang F, Yang X. Weak solutions of Monge-Ampére equation in optimal transportation. Acta Math Sci, 2013, 33B(4): 950–962 [21] Kobayashi S, Nomizu K. Foundations of Differential Geometry, vol I. New York: Interscience Publishers, Wiley, 1963 [22] Li C, Li J, Zhang X. A mean value formula and a Liouville theorem for the complex Monge-Ampère equation. Int Math Res Not, 2020, 3: 853–867 [23] Li C, Li J, Zhang X. Some interior regularity estimates for solutions of complex Monge-Ampère equations on a ball. Calc Var Partial Differential Equations, 2021, 60 (1): art. 34 [24] Li S. On the existence and regularity of Dirichlet problem for complex Monge-Ampère equations on weakly pseudoconvex domains. Calc Var Partial Differential Equations, 2004, 20(2): 119–132 [25] Li C, Zheng T. The Dirichlet problem on almost Hermitian manifolds. J Geom Anal, 2021, 31(6): 6452–6480 [26] Pali N. Fonctions plurisousharmoniques et courants positifs de type (1, 1) sur une variété presque complexe. Manuscripta Math, 2005, 118(3): 311–337 [27] Pliś S. The Monge-Ampère equation on almost Hermitian manifolds. Math Z, 2014, 276: 969–983 [28] Schulz F. A C2 estimate for solutions of complex Monge-Ampère equations. J Reine Angew Math, 1984, 348: 88–93 [29] Spruck J. Geometric aspects of the theory of fully nonlinear elliptic equations//Global Theory of Minimal Surfaces, vol 2. Providence, RI: Amer Math Soc, 2005: 283–309 [30] Trudinger N S. On the Dirichlet problem for Hessian equations. Acta Math, 1995, 175(2): 151–164 [31] Tosatti V. A general Schwarz lemma for almost Hermitian manifolds. Comm Anal Geom, 2007, 15(5): 1063–1086 [32] Wang Y, Weinkove B, Yang X. C2,α estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc Var Partial Differential Equations, 2015, 54(1): 431–453 [33] Tosatti V, Weinkove B, Yau S T. Taming symplectic forms and the Calabi-Yau equation. Proc Lond Math Soc, 2008, 97(2): 401–424 [34] Wang Y. On the C2,α-regularity of the complex Monge-Ampère equation. Math Res Lett, 2012, 19(4): 939–946 [35] Wang Y, Zhang X. Dirichlet problem for Hermitian-Einstein equation over almost Hermitian manifold. Acta Math Sin Engl Ser, 2012, 28(6): 1249–1260 [36] Zhang X. Twisted quiver bundles over almost complex manifolds. J Geom Phys, 2005, 55(3): 267–290 |