[1] Azzollini A. A note on the elliptic Kirchhoff equation in $\mathbb{R}^N$ perturbed by a local nonlinearity. Commun Contemp Math, 2015, 17(4):1450039 [2] Berti M, Matzeu M, Valdinoci E. On periodic elliptic equations with gradient dependence. Commun Pure Appl Anal, 2008, 7(3):601-615 [3] Chen Z M. A priori bounds and existence of positive solutions of an elliptic system of Kirchhoff type in three or four space dimensions. J Fixed Point Theory Appl, 2018, 20(3):120 [4] Chen Z M, Dai Q Y. Non-degeneracy of positive solutions of Kirchhoff equations and its application. J Math Anal Appl, 2019, 470(2):716-732 [5] de Araujo A L A. Another approach on an elliptic equation of Kirchhoff type. Port Math, 2013, 70(1):11-22 [6] Chipot M, Lovat B. On the asymptotic behavior of some nonlocal prolems. Positivity, 1999, 3(1):65-81 [7] Chipot M, Lovat B. Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal, 1997, 30(7):4619-4627 [8] Chipot M, Rodrigues J F. On a class of nonlocal nonlinear elliptic problems. RAIRO Modél Math Anal Numér, 1992, 26(3):447-467 [9] Corrêa F J S A. On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal, 2004, 59(7):1147-1155 [10] Corrêa F J S A, Figueiredo G M. A variational approach for a nonlocal and nonvariational elliptic problem. J Integral Equations Appl, 2010, 22(4):549-557 [11] Dai Q Y, Gu Y G, Zhu J Y. A priori estimates, existence and nonexistence of positive solutions of generalized mean curvature equations. Nonlinear Anal, 2011, 74(18):7126-7136 [12] Dai Q Y, Lan E H, Shi F L. A priori bounds for positive solutions of Kirchhoff type equations. Comput Math Appl, 2018, 76(6):1525-1534 [13] Dancer E N. Fixed point index calculations and applications//Maetzu M, Vignoli A. Topological Nonlinear Analysis:Degree, Singularity and Variations. Boston:Birkhauser, 1995:303-340 [14] de Figueiredo D G, Lions P L, Nussbaum R D. A priori estimates and existence of positive solutions of semilinear elliptic equations. J Math Pures Appl, 1982, 61(1):41-63 [15] de Figueiredo D G, Yang J F. A priori bounds for positive solutions of a non-variational elliptic systerm. Comm Partial Differential Equations, 2001, 26(11/12):2305-2321 [16] Figueiredo G M. Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J Math Anal Appl, 2013, 401(2):706-713 [17] Figueiredo G M, Santos J R J. Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differential Integral Equations, 2012, 25(9/10):853-868 [18] Fiscella A, Valdinoci E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal, 2014, 94:156-170 [19] Gidas B, Spruck J. A priori bounds for positive solutions of nonlinear elliptic equations. Comm Partial Differential Equations, 1981, 6(8):883-901 [20] Li G B, Niu Y H. The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation. Acta Mathematica Scientia, 2020, 40B(1):90-112 [21] Liu J, Liao J F, Tang C L. Positive solutions for Kirchhoff-type equations with critical exponent in $\mathbb{R}^N$. J Math Anal Appl, 2015, 429(2):1153-1172 [22] Naimen D. The critical problem of Kirchhoff type elliptic equations in dimension four. J Differential Equations, 2014, 257(4):1168-1193 [23] Naimen D. Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. Nonlinear Differ Equ Appl, 2014, 21(6):885-914 [24] Ruiz D. A priori estimates and existence of positive solutions for strongly nonlinear problems. J Differential Equations, 2004, 199(1):96-114 [25] Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann Inst H Poincaré Anal Non Linéaire, 1992, 9(3):281-304 |