[1] Chandrasekhar S. Stochastic problems in physics and astronomy. Reviews of Modern Physics, 1943, 15(1):1-89 [2] Hwang H J, Jang J. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems Series B, 2013, 18(3):681-691 [3] Jin S, Zhu Y. Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales. SIAM J Math Anal, 2018, 50(2):1790-1816 [4] Perthame B. Higher moments for kinetic equations:The Vlasov-Poisson and Fokker-Planck cases. Mathematical Methods in the Applied Sciences, 1990, 13:441-452 [5] Luo L, Yu H. Spectrum analysis of the linear Fokker-Planck equation. Analysis and Applications, 2017, 15:313-331 [6] Liao J, Wang Q, Yang X. Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker-Planck equations. J Stat Phys, 2018, 173(1):222-241 [7] Galkin V S, Rusakov S V. Kinetic Fokker-Planck equation for free-molecular, thermally nonequilibrium Brownian particles in an inhomogeneous gas. Fluid Dynamics, 2007, 42(2):330-334 [8] Montgomery D. Brownian motion from Boltzmann's equation. The Physics of Fluids, 1971, 14:2088-2090 [9] Villani C. A review of mathematical topics in collisional kinetic theory//Handbook of Mathematical Fluid Dynamics. Amsterdam:North-Holland, Vol I. 2002:71-305 [10] Frank T D. Nonlinear Fokker-Planck Equations:Fundamentals and Applications. Springer, 2005 [11] Carrillo J A, Toscani G. Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations. Mathematical Methods in the Applied Sciences, 1998, 21(13):1269-1286 [12] Yang T, Yu H. Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system. SIAM J Math Anal, 2010, 42(1):459-488 [13] Carrillo J A, Duan R, Moussa A. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic and Related Models, 2011, 4(1):227-258 [14] Goudon T, He L, Moussa A, et al. The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium. SIAM J Math Anal, 2009, 42(5):2177-2202 [15] Li F, Mu Y, Wang D. Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck Equations:Global existence near the equilibrium and large time behavior. SIAM J Math Anal, 2017, 49(2):984-1026 [16] Mellet A, Vasseur A. Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations. Comm Math Phys, 2008, 281:573-596 [17] Villani C. Hypocoercivity. Mem Amer Math Soc, 2009, 202(950) [18] Hörmander L. Hypoelliptic second order differential equations. Acta Math, 1967, 119:147-171 [19] Bouchut F. Hypoelliptic regularity in kinetic equations. J Math Pures Appl, 2002, 81(11):1135-1159 [20] Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1971 |