[1] Duan R J, Liu H X, Ukai S, Yan T. Optimal Lp — Lq convergence rates for the compressible Navier-Stokes equations with potential force. J Differential Equations, 2007, 238(1): 220–233 [2] Duan R J, Ukai S, Yang T, Zhao H J. Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math Models Methods Appl Sci, 2007, 17(5): 737–758 [3] Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ Math J, 1995, 44(2): 603–676 [4] Hoff D, Zumbrun K. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z Angew Math Phys, 1997, 48(4): 597–614 [5] Huang F M, Li J, Matsumura A. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197(1): 89–116 [6] Kanel J I. The Cauchy problem for the equations of gas dynamics with viscosity. Sibirsk Mat Zh, 1979, 20(2): 208–218 [7] Kawashima S. System of a Hyperbolic-Parabolic Composite Type with Applications to the Equations of Manetohydrodynamics [D]. Kyoto: Kyoto University, 1983 [8] Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm Math Phys, 1985, 101(1): 97–127 [9] Kawashima S, Nishida T. Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases. J Math Kyoto Univ, 1981, 21(4): 825–837 [10] Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb{R}^3$. Comm Math Phys, 1999, 200(3): 621–659 [11] Li H L, Matsumura A, Zhang G J. Optimal decay rate of the compressible Navier-Stokes-Poisson system in $mathbb{R}^3$. Arch Ration Mech Anal, 2010, 196(2): 681–713 [12] Li H L, Yang T, Zou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Math Sci, 2009, 29B(6): 1721–1736 [13] Li H L, Zhang T. Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system. Sci China Math, 2012, 55(1): 159–177 [14] Liu T P. Pointwise convergence to shock waves for viscous conservation laws. Commun Pure Appl Math, 1997, 50(11): 1113–1182 [15] Liu T P, Noh S E. Wave propagation for the compressible Navier-Stokes equations. J Hyperbolic Differ Equ, 2015, 12(2): 385–445 [16] Liu T P, Wang W K. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimension. Comm Math Phys, 1998, 196(1): 145–173 [17] Liu T P, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1988, 118(3): 451–465 [18] Liu T P, Yu S H. The Green’s function and large-time behavior of solutions for one dimensional Boltzmann equation. Comm Pure Appl Math, 2004, 57(12): 1543–1608 [19] Liu T P, Yu S H. Green’s function of Boltzmann equation, 3-D waves. Bull Inst Math Acad Sin, 2006, 1(1): 1–78 [20] Liu T P, Yu S H. Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Comm Pure Appl Math, 2007, 60(3): 295–356 [21] Liu T P, Yu S H. Solving Boltzmann equation, part I: Green’s function. Bull Inst Math Acad Sin, 2011, 6(2): 115–243 [22] Liu T P, Yu S H. Dirichlet-Neumann kernel for hyperbolic-dissipative system in half space. Bull Inst Math Acad Sin, 2012, 7(4): 1477–543 [23] Liu T P, Zeng Y N. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem Amer Math Soc, 1997, 125(599) [24] Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad Ser A Math Sci, 1979, 55(9): 337–342 [25] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20(1): 67–104 [26] Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor Equations. Vienna: Springer-Verlag, 1990 [27] Okada M, Kawashima S. On the equations of one-dimensional motion of compressible viscous fluids. J Math Kyoto Univ, 1983, 23(1): 55–71 [28] Ukai S, Yang T, Yu S H. Nonlinear boundary layers of the Boltzmann equation: I. Existence. Comm Math Phys, 2003, 236(3): 373–393 [29] Wang W K, Wu Z G. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions. J Differential Equations, 2010, 248(7): 1617–1636 [30] Wang W K, Xu X. The decay rate of solution for the bipolar Navier-Stokes-Poisson system. J Math Phys, 2014, 55(9): 91–502 [31] Wang W K, Yang T. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions. J Differential Equations, 2001, 173(2): 410–450 [32] Wang Y J. Decay of the Navier-Stokes-Poisson equations. J Differential Equations, 2012, 253(1): 273–297 [33] Wu Z G, Wang W K. Pointwise estimates of solution for non-isentropic Navier-Stokes-Poisson equations in multi-dimensions. Acta Math Sci, 2012, 32B(5): 1681–1702 [34] Wu Z G, Wang W K. Large time behavior and pointwise estimates for compressible Euler equations with damping. Sci China Math, 2015, 58(7): 1397–1414 [35] Wu Z G, Wang W K. Refined pointwise estimates for the Navier-Stokes-Poisson equations. Anal Appl, 2016, 14(5): 739–762 [36] Wu Z G, Wang W K. Pointwise estimates for bipolar compressible Navier-Stokes-Poisson system in dimension three. Arch Ration Mech Anal, 2017, 226(2): 587–638 [37] Wu Z G, Wang W K. Generalized Huygens’ principle for bipolar non-isentropic compressible Navier-Stokes-Poisson system in dimension three. J Differential Equations, 2020, 269(10): 7906–7930 [38] Yu S H. Nonlinear wave propagation over a Boltzmann shock profile. J Amer Math Soc, 2010, 23(4): 1040–1118 [39] Zou C. Large time behaviors of the isentropic bipolar compressible Navier-Stokes-Poisson system. Acta Math Sci, 2011, 31(5): 1725–1740 [40] Zhang G J, Li H L, Zhu C J. Optimal decay rate of the non-isentropic Navier-Stokes-Poisson system in $mathbb{R}^3$. J Differential Equations, 2011, 250(2): 866–891 [41] Zeng Y N. L1 Asymptotic behavior of compressible isentropic viscous 1-D flow. Comm Pure Appl Math, 1994, 47(8): 1053–1082 |