[1] Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluid. J Math Pures Appl, 2004, 83:243-275 [2] Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscript Math, 2006, 120:91-129 [3] Cho Y, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differ Eqs, 2003, 190:504-523 [4] Feireisl E, Novotny A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3(4):358-392 [5] Hoff D. Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303(1):169-181 [6] Hoff D. Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data. Indiana University Mathematics Journal, 1992, 41(4):1225-1302 [7] Hoff D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J Differ Eqs, 1995, 120(1):215-254 [8] Hoff D. Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch Rational Mech Anal, 1995, 132:1-14 [9] Hoff D. Compressible flow in a half-space with Navier boundary conditions. J Math Fluid Mech, 2005, 7(3):315-338 [10] Hoff D, Santos M M. Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch Rational Mehc Anal, 2008, 188(3):509-543 [11] Hoff D, Tsyganov E. Time analyticity and backward uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow. J Differ Eqs, 2008, 245(10):3068-3094 [12] Huang X D, Li J, Xin Z P. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65:549-585 [13] Huang X D, Li J. Global classical and weak solutions to the three-dimensional full compressible NavierStokes system with vacuum and large oscillations. Arch Ration Mech Anal, 2018, 227(3):995-1059 [14] Huang F M, Wang Z. Convergence of viscosity solutions for isothermal gas dynamics. SIAM J Math Anal, 2002, 34(3):595-610 [15] Itaya N. On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Kodai Math J, 1971, 23(1):60-120 [16] Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl Mat Meh, 1977, 41:282-291 [17] Ladyzenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Ttype. Providence, RI:American Mathematical Society, 1968 [18] Lions P L. Mathematical Topics in Fluid Mechanics. Vol 2. Compressible Models. New York:Oxford University Press, 1998 [19] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heatconductive gases. J Math Kyoto Univ, 1980, 20(1):67-104 [20] Matsumura A, Nishida T. The initial value problem for the equations of motion of compressible viscous and heat conductive fluids. Proc Japan Acad Ser A Math Sci, 1979, 55:337-342 [21] Matsumura A, Nishida T. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89:445-464 [22] Nash J. Le problème de Cauchy pour les équations différentielles d'un fluide général. Bull Soc Math France, 1962, 90:478-497 [23] Nishida T. Global solution for an initial-boundary value problem of a quasilinear hyperbolic systems. Proc Japan Acad, 1968, 44:642-646 [24] Salvi R, Straškraba I. Global existence for viscous compressible fluids and their behavior as t → ∞. J Fac Sci Univ Tokyo Sect IA Math, 1993, 40:17-51 [25] Serre D. Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C R Acad Sci Paris Sér I Math, 1986, 303:639-642 [26] Serre D. Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris Sér I Math, 1986, 303:703-706 [27] Serrin J. On the uniqueness of compressible fluid motion. Arch Rational Mech Anal, 1959, 3:271-288 [28] Tani A. On the first initial-boundary value problem of compressible viscous fluid motion. Publications of the Research Institute for Mathematical Sciences, 1977, 13(1):193-253 [29] Zhang P X, Deng X M, Zhao J N. Global classical solutions to the 3-D isentropic compressible Navier-Stokes equations with general initial energy. Acta Mathematica Scientia, 2012, 32B(6):2141-2160 [30] Zlotnik A A. Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations. Diff Equations, 2000, 36:701-716 |