[1] Aguirre J, Escobedo M. On the blow-up of the solutions of a convective reaction diffusion equation. Proc Roy Soc Edinburgh Sec A, 1993, 123(3): 433--460
[2] Balodis P, Cordoba A. An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations. Adv Math, 2007, 214: 1--39
[3] Bardos C, Titi E S. Euler equations for incompressible ideal fluids. Russian Math. Surveys, 2007, 62(3): 409--451
[4] Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm Math Phys, 1984, 94(1): 61--66
[5] Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35: 771--831
[6] Chae D. Global regularity of the 2D Boussinesq equations with the partial viscousity terms. Adv Math, 2006, 203(2): 497--513
[7] Constantin P, Fefferman C, Majda A. Geometric constraints on potential singular solution for the 3-D Euler equations. Commun Partial Differ Equ, 1996, 21(3/4): 559--571
[8] Constantin P, Foias C. Navier-Stokes Equations. Chicago: Chicago University Press, 1988
[9] Constantin P, Lax P D, Majda A J. A simple one-dimensional model for the three-dimensional vorticity equation. Comm Pure Appl Math, 1985, 38(6): 715--724
[10] Constantin P, Majda A, Tabak E. Formation of strong fronts in the 2D quasigeostrophic thermal active scalar. Nonlinearity, 1994, 7(6): 1495--1533
[11] Constantin P, Wu J H. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 30: 937--948
[12] Cordoba D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann Math, 1998, 148: 1135--1152
[13] DiPerna R J, Lions P L. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann Math, 1989, 130: 321--366
[14] Escauriaza L, Seregin G A, Sverak V. L3, ∞-solutions of Navier-Stokes equations and backward uniqueness. (Russian) Uspekhi Mat Nauk, 2003, 58(2)(350): 3--44; translation in Russian Math Surveys, 2003, 58(2): 211--250
[15] Fefferman C. http://www.claymath.org/Millennium_Prize_Problems/Navier-Stokes_equations.
[16] Ferrari A. On the blow-up of solutions of the 3-D Euler equations in the bounded domain. Comm Math Phys, 1993, 155(2): 277--194
[17] Fujita H, Kato T. On the Navier-Stokes initial value problem: I. Arch Rational Mech Anal, 1964, 16: 269--315
[18] Hopf E. Über die Anfangswertaufgabe f\"ur die hydrodynamischen Grundgleichungen. Math Nachr, 1951, 4: 213--231
[19] Hou T Y, Li C. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12(1): 1--12
[20] Hou T Y, Li C. Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl. Comm Pure Appl Math, 2008, 61(5): 661--697
[21] Hou T Y, Lei Z. On the stabilizing effect of convection in 3D incompressible flows. Comm Pure Appl Math, 2009, 62(4): 501--564
[22] Hou T Y, Lei Z. On partial regularity of a 3D model of Navier-Stokes equations. Commun Math Phys, 2009, 287: 281--298
[23] Hou T Y, Li C, Shi Z, Wang S, Yu X. On singularity formation of a nonlinear nonlocal system. arXiv:0911. 3946v1[math.AP], 2009. To appear in Arch Rational Mech Anal
[24] Hou T Y, Shi Z, Wang S. On singularity formation of a 3D model for incompressible Navier-Stokes equations. arXiv:0912.1316[math.AP], 2009
[25] Kiselev A, Nazarov F, Volberg A. Global well-possedness for the critial 2D dissipative quasi-geostrophic equation. Invent Math, 2007, 167: 445--453
[26] Kozono H, Taniuchi Y. Bilinear estimates in BMO and Navier-Stokes equations. Mat Z, 2000, 235(1): 173--194
[27] Lai M J, Pan R H, Zhao K. Initial boundary value problem for two-dimensional viscous Boussinesq equations. To appear in Arch Rational Mech Anal, 2010
[28] Lemari\'e-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Chapman & Hall/CRC Research Notes in Mathematics Series 431. New York: A CRC Press Company, 2002
[29] Levine H A. the role of critical exponents in the blow up theorems. SIAM Rev, 1990, 32(2): 262--288
[30] Lichtenstein L. Über einige Existenzprobleme der Hydrodynamik homogener, unzusammendr\"uckbarer, reibungsloser Fl\"ussigkeiten und die Helmholtzschen Wirbelsätze. Math Z, 1925, 23(1): 89-154
[31] Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York-London: Gordon and Breach Science Publishers, 1963
[32] Ladyzhenskaya O A. Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness. Russian Math Surveys, 2003, 58(2): 251--286
[33] Leray J. Sur le mouvement d'un liquex emplissant l'espace. Acta Math, 1934, 63: 193--248
[34] Lin F H. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm Pure Appl Math, 1998, 51(3): 241--257
[35] Liu J G, Wang W C. Convergence analysis of the energy and helicity preserving scheme for axisymmetric flows. SINUM, 2006, 44(6): 2456--2480
[36] Majda A J, Bertozzi A L. Vorticity and Incompressible Flow. Cambridge Texts Appl Math, Vol 27. Cambridge: Cambridge Univ Press, 2002
[37] Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann Mat Pura Appl, 1959, 48: 173--182
[38] Schochet S. Explicit solutions of viscous model vorticity equation. Commun Pure Appl Math, 1986, 39: 531--537
[39] Serrin J. On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1962, 9: 187--195
[40] Temam R. Navier-Stokes Equations. Second Ed. Providence, RI: Amer Math Soc Chelsea Publishing, 2001 |