[1] Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equation. Commun Math Phys, 1984, 94:61-66[2] Chen Q, Tan Z, Wu G. LPS's Criterion for Incompressible Nematic Liquid Crystal Flows. Acta Math Sci, 2014, 34B(4):1072-1080[3] Gennes P G. The Physics of Liquid Crystals. Oxford, 1974[4] Ericksen J L. Hydrostatic theory of liquid crystal. Arch Ration Mech Anal, 1962, 9:371-378[5] Fan J S, Li J K. Regularity criteria for the strong solutions to the Ericksen-Leslie system in R3. J Math Anal Appl, 2015, 425(2):695-703[6] Hong M C. Global existence of solutions of the simplified Ericksen-Leslie system in R2. Calc Var Partial Differ Equ, 2011, 40:15-36[7] Hong M C, Xin Z P. Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in R2. Adv Math, 2012, 231:1364-1400[8] Hong M C, Li J K, Xin Z P. Blow-up criteria of strong solutions to the Ericksen-Leslie system in R3. Comm Partial Differ Equ, 2014, 39(7):1284-1328[9] Huang T, Wang C Y. Blow up criterion for nematic liquid crystal flows. Comm Partial Differ Equ, 2012, 37:875-884[10] Huang T, Lin F H, Liu C, Chang C Y. Blow up criterion for the incompressible nematic liquid crystal flows. Acta Appl Math, 2017, 147:63-80[11] Kozono H, Taniuchi Y. Bilinear estimates in BMO and the Navier-Stokes equations. Math Z, 2000, 235:173-194[12] Lei Z, Zhou Y. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin Dyn Syst, 2009, 25(2):575-583[13] Lei Z, Li D, Zhang X Y. Remarks of global wellposedness of liquid crystal flows and heat flows of harmonic maps in two dimensions. Proc Amer Math Soc, 2014, 142(11):3801-3810[14] Leslie F M. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1962, 28:265-283[15] Li J K, Tii S E, Xin Z P. On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in R2. Math Models Methods Appl Sci, 2016, 26(4):803-822[16] Li J K, Xin Z P. Global weak solutions to non-isothermal nematic liquid crystals in 2D. Acta Math Sci, 2016, 36B(4):973-1014[17] Lin F H. Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun Pure Appl Math, 1989, 42:789-814[18] Lin F H, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun Pure Appl Math, 199548:501-537[19] Lin F H, Liu C. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete Contin Dyn Syst, 1996, 2:1-22[20] Lin F H, Lin J, Wang C Y. Liquid crystal flows in two dimensions. Arch Rational Mech Anal, 2010, 197:297-336[21] Lin F H, Wang C Y. On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chinese Ann Math, 2010, 31B(6):921-928[22] Lin F H, Chang C Y. Global existence of weak solutions of the nematic liquid crystal flow in dimensions three. Commun Pure Appl Math, 2017, 69(8):1532-1571[23] Majda A. Compressible Fluid Flow and System of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, 53. New York:Springer-Verlag, 1984[24] Xu X, Zhang Z. Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J Differ Equ, 2012, 252:1169-1181 |