[1] Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc Var Partial Differential Equations, 2007, 30(1):85-112 [2] Ambrosetti A, Colorado E, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn. J Funct Anal, 2008, 254(11):2816-2845 [3] Bartsch T, Wang Z-Q. Note on ground states of nonlinear Schrödinger systems. J Partial Differential Equations, 2006, 19(3):200-207 [4] Bartsch T, Wang Z-Q, Wei J. Bound states for a coupled Schrödinger system. J Fixed Point Theory Appl, 2007, 2:353-367 [5] Benci V. A new approach to the Morse-Conley theory and some applications. Ann Mat Pura Appl, 1991, 158(4):231-305 [6] Chang K-C. Infinite dimensional Morse theory and multiple solutions. Boston:Birkhäuser, 1993 [7] Chang K-C, Ghoussoub N. The Conley index and the critical groups via an extension of Gromoll-Meyer theory. Topol Methods Nonlinear Anal, 1996, 7(1):77-93 [8] Chang K-C. An extension of the Hess-Kato theorem to elliptic systems and its applications to multiple solution problems. Acta Math Sin (Engl Ser), 1999, 15(4):439-454 [9] Chang K-C. Methods in Nonlinear Analysis. Berlin:Springer-Verlag, 2005 [10] Chang K-C, Wang Z-Q. Notes on the bifurcation theorem. J Fixed Point Theory Appl, 2007, 1(2):195-208 [11] Dai G, Tian R, Zhang Z. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger systems. Discrete Contin Dyn Syst Ser S, 2019, 12(7):1905-1927 [12] Dancer E N, Wei J, Weth T. A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27(3):953-969 [13] Deconinck B, Kevrekidis P G, Nistazakis H E, Frantzeskakis D J. Linearly coupled Bose-Einstein condensates:From Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral waves. Phys Rev A, 2004, 70(6):063605 [14] Gazzola F, Grunau H C, Sweers G. Polyharmonic boundary value problems:positivity preserving and nonlinear higher order elliptic equations in bounded domains. Berlin:Springer-Verlag, 2010 [15] Li K, Zhang Z. Existence of solutions for a Schrödinger system with linear and nonlinear couplings. J Math Phys, 2016, 57(8):081504 [16] Lin T, Wei J. Ground state of N Coupled Nonlinear Schrödinger equations in $\mathbb{R}^N$, n ≤ 3. Comm Math Phys, 2005, 255(3):629-653 [17] Liu Z, Wang Z-Q. Multiple bound states of nonlinear Schrödinger systems. Comm Math Phys, 2008, 282(3):721-731 [18] Maia L A, Montefusco E, Pellacci B. Positive solutions for a weakly coupled nonlinear Schrödinger system. J Differential Equations, 2006, 229(2):743-767 [19] Rabinowitz P. Minimax methods in critical point theory with application to differential equations. CBMS. Vol 65. AMS:Providence, 1986 [20] Rüegg Ch, Cavadini N, Furrer A, et al. Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature, 2003, 423(6935):62-65 [21] Sirakov B. Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbb{R}^N$. Comm Math Phys, 2007, 271(1):199-221 [22] Su J, Tian R, Wang Z-Q. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete Contin Dyn Syst Ser S, 2019, 12(7):2143-2161 [23] Su J, Tian R, Zhao L. Bifurcations of elliptic systems with linear couplings. Appl Math Lett, 2020, 100:106042 [24] Tian R, Zhang Z-T. Existence and bifurcation of solutions for a double coupled system of Schrödinger equations. Sci China Math, 2015, 58(8):1607-1620 |