[1] Alves C O, Souto M A S, Montenegro M. Existence of solution for two classes of elliptic problems in RN with zero mass. J Differ Equ, 2012, 252: 5735–5750
[2] Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schr¨odinger equations with potentials vanishing at infinity. J Eur Math Soc, 2005, 7: 117–144
[3] Ambrosetti A, Rabinowitz P. Dual variational methods in critical points theory and applications. J Funct Anal, 1973, 14: 349–381
[4] Ambrosetti A, Wang Z Q. Nonlinear Schr¨odinger equations with vanishing and decaying potentials. Differ Integral Equ, 2005, 18: 1321–1332
[5] Aubin T. Probl´ems isop´erim´etriques et espaces de Sobolev. J Differ Geom, 1976, 11: 573–598
[6] Azzollini A, Pomponio A. On a “zero mass” nonlinear Schr¨odinger equation. Adv Nonlinear Stud, 2007, 7: 599–628
[7] Azzollini A, Pomponio A. Compactness results and applications to some “zero mass” elliptic problems. Nonlinear Anal, 2008, 69: 3559–3576
[8] Benci V, Fortunato D. Towards a unified theorey for classical electrodynamics. Arch Rational Mech Anal, 2004, 173: 379–414
[9] Badiale M, Pisani L, Rolando S. Sum of weighted Lebesgue spaces and nonlinear elliptic equations. NoDEA Nonlinear Differential Equations Appl, 2011, 18(4): 369–405
[10] Berestycki H, Lions P L. Nonlinear scalar field equations-I and I. Existence of a ground state. Arch Rational Mech Anal, 1983, 82: 313–345
[11] Berestycki H, Lions P L. Nonlinear scalar field equations-I and II. exitence of infinitely many solutions. Arch Rational Mech Anal, 1983, 82: 347–376
[12] Berestycki H, Lions P L. Existence d’´etats multiples dans des ´equations de champs scalaires non lin´eaires dans le cas masse nulle. C R Acad Sci Paris S´er I Math, 1983, 297: 267–270
[13] Benci V, Grisanti C R, Micheletti A M. Existence and nonexistence of the ground state solution fot the nonlinear Schr¨odinger equations with V (1) = 0. Topol Methods Nonlinear Anal, 2005, 26: 203–219
[14] Benci V, Grisanti C R, Micheletti A M. Existence of solutions for the nonlinear Schr¨odinger equation with V (1) = 0. Progr Nonlinear Equations Appl, 2005, 66: 53–65
[15] Busca J, Sirakov B. Symmetric results for semilinear elliptic systems in the whole space. J Differ Equ, 2000, 163: 41–56
[16] Caffarelli L A, Gidas B, Spruck J. Asymptotic symmetric and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math, 1989, 42(3): 271–297
[17] Ding Y H, Luan S X. Multiple solutions for a class of nonlinear Schr¨odinger equations. J Differ Equ, 2004, 207: 423–457
[18] De Finueirdo D G, Yang J F. Decay, symmetry and existence of solutions of semilinear elliptic syestems. Nolinear Anal T M A, 1998, 33: 211–234
[19] Ghiment M, Micheletti A M. Existence of minimal nodal solutions for the nonlinear Schr¨odinger equation with V (1) = 0. Adv Differ Equ, 2006, 11(12): 1375–1396
[20] Kryszewski W, Szulkin A. Generalized linking theorem with an application to semilinear Schr¨odinger equation. Adv Differ Equ, 1998, 3: 441–472
[21] Li G B, Szulkin A. An asymptically periodic Schr¨odinger equation with indefinite linear part. Comm Contemp Math, 2002, 4: 763–776
[22] Li G B, Wang C H. The existence of nontivial solutiond to a semilinear elliptic system on RN without the Ambrosetti-Rabinowitz condition. Acta Math Sci, 2010, 30B(6): 1917–1936
[23] Li G B, Yang J F. Asymptotically linear elliptic systems. Comm Partial Differ Equ, 2004, 29: 925–954
[24] Lions P L. The concentration-compcatness principle in the calculus of variations, The locally compact case II. Ann Inst H Poincar´e Anal Non Lin´eaire, 1984, 1: 223–282
[25] Liu Z L, Wang Z Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4: 561–572
[26] Miyagaki O H, Souto M A S. Super-linear problems without Ambrosetti and Rabinowitz growth condition. J Differ Equ, 2008, 245: 3628–3638
[27] Mao A, Zhang Z T. Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal, 2009, 70: 1275–1287
[28] Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1997, 55: 149–162
[29] Talenti G. Best constant in Sobolev inequality. Ann Mat Pura Appl, 1976, 110: 353–372
[30] Willem M. Minimax Theorems. Boston, Basel, Berlin: Birkh¨auser, 1996 |