[1] Bouchut F. On zero pressure gas dynamics. Adv Kinet Theor Comput, 1994, 22:171-190
[2] Bouchut F, James F. One-dimensional transport equations with discontinuous coefficients. Nonlinear AnalTheor, 1998, 32(7):891-933
[3] Boudin L. A solution with bounded expansion rate to the model of viscous pressureless gases. SIAM J Math Anal, 2000, 32(1):172-193
[4] Brenier Y, Grenier E. Sticky particles and scalar conservation laws. SIAM J Numer Anal, 1998, 35(6):2317-2328
[5] Cucker F, Smale S. Emergent behavior in flocks. IEEE T Automat Contr, 2007, 52(5):852-862
[6] Dafermos C M. Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Technical Report, DTIC Document, 1976
[7] E W, Rykov Y G, Sinai Y G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun Math Phys, 1996, 177(2):349-380
[8] Ha S Y, Huang F M, Wang Y. A global unique solvability of entropic weak solution to the one-dimensional pressureless euler system with a flocking dissipation. J Differ Equas, 2014, 257(5):1333-1371
[9] Ha S Y, Liu J G. A simple proof of the cucker-smale flocking dynamics and mean-field limit. Commun Math Sci, 2009, 7(2):297-325
[10] Ha S Y, Slemrod M. Flocking dynamics of singularly perturbed oscillator chain and the cucker-smale system. J Dyn Differ Equ, 2010, 22(2):325-330
[11] Ha S Y, Tadmor E. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet Relat Mod, 2008, 1(3):415-435
[12] Hopf E. The partial differential equation ut+uux=μuxx. Commun Pur Appl Math, 1950, 3(3):201-230.
[13] Huang F M, Li C Z, Wang Z. Solutions containing delta-waves of cauchy problems for a nonstrictly hyperbolic system. Acta Math Appl Sin, 1995, 11(4):429-446
[14] Huang F M, Wang Z. Well posedness for pressureless flow. Commun Math Phys, 2001, 222(1):117-146
[15] Li B H. Almost all points on the real axis can be original points of shock waves. Sci China Math, 2011, 54(1):1-8
[16] Toner J, Tu Y H. Flocks, herds, and schools:A quantitative theory of flocking. Phys Rev E, 1998, 58(4):4828-4858
[17] Vicsek T, Czirók A, Ben-Jacob, E, et al. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett, 1995, 75(6):1226
[18] Wang Z, Ding X Q. Uniqueness of generalized solution for the cauchy problem of transportation equations. Acta Math Sci, 1997, 17(3):341-352
[19] Wang Z, Huang F M, Ding X Q. On the cauchy problem of transportation equations. Acta Math Appl Sin-E, 1997, 13(2):113-122 |