[1] Bénilan P, Touré H. Sur l’équation générale ut = a(·, u, Φ(·, u)x)x+v dans L1. II. Le probléme d’évolutions. Ann Inst H Poincaré Anal Non Linéaire, 1995, 12: 727–761
[2] Bardos C, Le Roux A Y, Nedelec J C. First order quasilinear equations with boundary conditions. Comm Partial Diff Equ, 1979, 4: 1017–1034
[3] Bendahmane M, Karlsen K H. Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic equations. SIAM J Math Anal, 2004, 36(2): 405–422
[4] Bendahmane M, Karlsen K H. Entropy solutions for degenerate parabolic equations with L1 \ Lp data. Preprint, 2011
[5] Bendahmane M, Karlsen K H. Uniqueness of entropy solutions for doubly nonlinear anisotropic degenerate parabolic equations. Contemporary Math Amer Math Soc, 2005, 371: 1–27
[6] Bustos M C, Concha F, B¨urger R, et al. Sedimentation and Thicking: Phenomenological Foundation and Mathematical Theory. Dordrecht: Kluwer Academic Publishers, 1999
[7] Carrillo J. Entropy solutions for nonlinear degenerate problems. Arch Rational Mech Anal, 1999, 147: 269–361
[8] Chen G -Q, DiBenedetto E. Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations. SIAM J Math Anal, 2001, 33: 751–762
[9] Chen G -Q, Karlsen K. Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun Pure Appl Anal, 2005, 4(2): 241–266
[10] Chen G -Q, Karlsen K. L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans Amer Math Soc, 2006, 358: 937–963
[11] Chen G -Q, Perthame B.Well-posedness for non-isotropic degenerate parabolic-hyperbolic equation. Analyse Non-Lineaire, 2003, 20: 645–668
[12] Chen G -Q, Perthame B. Large-time behavior of periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equation. Proc Amer Math Soc, 2009, 137: 3003–3011
[13] Evje S, Karlsen K H. Monotone difference approximations of BV solutions to degenerate convectiondiffusion equations. SIAM J Numer Anal, 2000, 37: 1838–1860 |