[1] Batchelor G K. An Introduction to Fluid Dynamics. Cambridge Mathematical Library, 1967
[2] Coulombel J -F, Benzoni-Gavage S, Serre D. Note on a paper by Robinet, Gressier, Casalis & Moschetta. J Fluid Mech, 2002, 469: 401--405
[3] Dafermos C. Hyperbolic Conservation Laws in Continuum Physics. 2nd ed. Springer, 2005
[4] Dingle L, Tooley M H. Aircraft Engineering Principles. Elsevier, 2005
[5] Dumbser M, Moschetta J -M, Gressier J. A matrix stability analysis of the carbuncle phenomenon. submitted to Elsevier Science, 2003
[6] Elling V. Numerical Simulation of Gas Flow in Moving Domains
[D]. RWTH Aachen (Germany), 2000
[7] Elling V. Nonuniqueness of entropy solutions and the carbuncle phenomenon//Proceedings of the 10th Conference on Hyperbolic Problems (HYP2004), Volume I. Yokohama Publishers, 2005: 375--382
[8] Elling V. A possible counterexample to well-posedness of entropy solution and to Godunov scheme convergence. Math Comp, 2006, 75: 1721--1733. arxiv:math.NA/0509331
[9] Elling V, Liu Tai-Ping. Supersonic flow onto a solid wedge. Comm Pure Appl Math, 2008, 61(10): 1347--1448
[10] Glimm J, Liu Yingjie, Xu Zhiliang, Zhao Ning. Conservative front tracking with improved accuracy. SIAM J Numer Anal, 2003, 41(5): 1926--1947
[11] Godunov S K. A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat Sb, 1959, 47: 271--290
[12] Hunter C. Experimental investigation of separated nozzle flows. J Propulsion Power, 2004, 20(3): 527--532
[13] Ismail F, Roe P L, Nishikawa H. A proposed cure to the carbuncle phenomenon//Deconinck H, Dick E, eds. Computational Fluid Dynamics. Springer-Verlag, 2009: 149--154
[14] Kalkhoran I M, Sforza P M, Wang F Y. Experimental study of shock-vortex interaction in a mach 3 stream. Technical Report, 1991. AIAA Paper 1991--3270
[15] Morton K W, Roe P. Vorticity-preserving Lax-Wendroff-type schemes for the system wave equation. SIAM J Sci Comput, 2001, 23(1): 170--192
[16] Osher S, Solomon F. Upwind difference schemes for hyperbolic systems of conservation laws. Math Comp, 1982, 38: 339--373
[17] Peery K M, Imlay S T. Blunt-body flow simulations. AIAA paper 88--2904, 1988
[18] Quirk J. A contribution to the great Riemann solver debate. Intl J Numer Meth Fluids,1994, 18: 555--574
[19] Ramalho M V C, Azevedo J L F. A possible mechanism for the appearance of the carbuncle phenomenon in aerodynamic simulations. submitted to 48th Aerospace Science Meeting of the AIAA, 2009
[20] Robinet J -Ch, Gressier J, Casalis G, Moschetta J -M. Shock wave instability and the carbuncle phenomenon: same intrinsic origin?
J Fluid Mech, 2000, 417: 237--263
[21] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys, 1981, 43: 357--372
[22] Shu C W, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J Comput Phys, 1989, 83: 32--78
|