In this paper, we show that for (log(2)/(3))/(2 log 2)≤β≤(1)/(2), suppose S is an invariant subspace of the Hardy-Sobolev spaces Hβ2(Dn) for the n-tuple of multiplication operators (Mz1,…, Mzn). If (Mz1|S,…, Mzn|S) is doubly commuting, then for any non-empty subset α={α1,…, αk} of {1,…,n}, WαS is a generating wandering subspace for Wα|S=(Mzα1|S,…, Mzαk|S), that is,[WαS]Wα|S=S, where WαS(S?zαiS).