[1] Maddox I J. Infinite Matrices of Operators. Berlin: Springer, 1980
[2] Djolovic I, Malkowsky E. Characterizations of compact operators on some Euler spaces of difference se-quences of order M. Acta Math Sci, 2011, 31B(4): 1465–1474
[3] Li R L, Swartz C. A nonlinear Schur theorem. Acta Sci Math (Szeged), 1993, 58: 497–508
[4] Swartz C. The Schur and Hahn theorems for operator matrices. Rocky Mt J Math, 1985, 15(1): 61–73
[5] Li R L, Shin M K, Swartz C. Operator matrices on topological vector spaces. J Math Anal Appl, 2002, 274: 645–658
[6] Song M L, Fang J X. Resonance theorems for family of quasi-homogeneous operators in fuzzy normed linear spaces. Fuzzy Sets Syst, 2008, 159: 708–719
[7] Zhong S S, Li R L, Yang H. Summability results for matrices of quasi-homogeneous operators. Proyecciones, 2008, 27(3): 249–258
[8] Chen A H, Li R L. A version of Orlicz-Pettis theorem for quasi-homogeneous operator space. J Math Anal Appl, 2011, 373: 127–133
[9] Swartz C. Multiplier Convergent Series. Singapore: World Scientific, 2009
[10] Wilansky A. Topics in Functional Analysis. Berlin, Heidelberg, New York: Springer, 1967
[11] Lei Q, Li R L. A class of multiplier convergent series spaces. Acta Math Sci, 2009, 29A(5): 1167–1174
[12] Swartz C. Infinite Matrices and the Gliding Hump. Singapore: World Scientific, 1996
[13] Wilansky A. Modern Methods in Topological Vector Spaces. New York: McGraw-Hill, 1978 |