[1] Mazur S, Ulam S. Surless transformations isometriques d'espaces vectorils normes. Competes Rendus Acad Sci Paris, 1932, 194: 946--948
[2] Mankiewicz P. On extension of isometries in normed linear spaces. Bull Acad Polon Sci Math Astronomy
Phys, 1972, 20: 367--371
[3] Tingley D. Isometries of the unit sphere. Geometriae Dedicata, 1987, 22: 371--378
[4] Ma Yumei. Isometries of the unit sphere. Acta Math Sci, 1992, 12(4): 366--373
[5] Wang Risheng. Isometries between the unit spheres of C0(Ω) type spaces. Acta Math Sci, 1994, 14: 82--89
[6] Ding Guanggui. The approximation problem of almost isometric operators by isometric operators. Acta Math Sci, 1988, 8(4): 14--23
[7] Ding G G. The 1-Lipschitz mapping between the unit sphere of two Hilbert spaces can be extend to a real linear isometry of the whole space. Science in China, Ser A, 2002, 45(4): 479--483
[8] Diestel J. Sequences and Series in Banach Spaces. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag, 1984
[9] Diestel J. Geometry of Banach Spaces-Selected Topics. Berlin, Heidelberg, New York: Springer-Verlag, 1975
[10] Alonso J, Ben\'{i}tez C. Some characteristic and non-characteristic properties of inner product spaces.
J Approx Theory, 1988, 55: 318--325
[11] Kirchev K, Troyanski S. On some characterisations of spaces with scalar product. C R Acad Bulgare Sci, 1975, 28: 445--447
[12] Rakov S. On uniformly smooth renorming of uniformly convex Banach spaces. J Soviet Math, 1985, 31: 2713--2721
[13] Senechalle D. Euclidean and non-Euclidean norms in a plane. Illinois J Math, 1971, 15: 281--289
|